Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
R01 GM129325
NIGMS NIH HHS - United States
GAČR 21-27329X
GAČR by 22-26278K
GAČR 20-11101S
Grantová agentura České republiky
PubMed
39673305
PubMed Central
PMC11662693
DOI
10.1093/nar/gkae1106
PII: 7914210
Knihovny.cz E-resources
- MeSH
- Adenosine Deaminase * metabolism genetics MeSH
- Cell Nucleus * metabolism MeSH
- Cytoplasm * metabolism MeSH
- RNA, Double-Stranded metabolism genetics MeSH
- RNA Editing MeSH
- HEK293 Cells MeSH
- HeLa Cells MeSH
- Interferons metabolism genetics MeSH
- Humans MeSH
- Protein Interaction Maps MeSH
- Poly I-C pharmacology MeSH
- Protein Isoforms * metabolism genetics MeSH
- RNA-Binding Proteins * metabolism genetics MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- ADAR protein, human MeSH Browser
- Adenosine Deaminase * MeSH
- RNA, Double-Stranded MeSH
- Interferons MeSH
- Poly I-C MeSH
- Protein Isoforms * MeSH
- RNA-Binding Proteins * MeSH
The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is essential for correct functioning of innate immune responses. The ADAR1p110 isoform is mainly nuclear and ADAR1p150, which is interferon (IFN) inducible, is predominately cytoplasmic. Using three different methods - co-immunoprecipitation (co-IP) of endogenous ADAR1, Strep-tag co-IP and BioID with individual ADAR1 isoforms - a comprehensive interactome was generated during both homeostasis and the IFN response. Both known and novel interactors as well as editing regulators were identified. Nuclear proteins were detected as stable interactors with both ADAR1 isoforms. In contrast, BioID identified distinct protein networks for each ADAR1 isoform, with nuclear components observed with ADAR1p110 and components of cytoplasmic cellular condensates with ADAR1p150. RNase A digestion distinguished between distal and proximal interactors, as did a double-stranded RNA (dsRNA)-binding mutant of ADAR1 which demonstrated the importance of dsRNA binding for ADAR1 interactions. IFN treatment did not affect the core ADAR1 interactomes but resulted in novel interactions, the majority of which are proximal interactions retained after RNase A treatment. Short treatment with high molecular weight poly(I:C) during the IFN response resulted in dsRNA-binding-dependent changes in the proximal protein network of ADAR1p110 and association of the ADAR1p150 proximal protein network with some components of antiviral stress granules.
See more in PubMed
Sinigaglia K., Wiatrek D., Khan A., Michalik D., Sambrani N., Sedmik J., Vukic D., O’Connell M.A., Keegan L.P.. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim. Biophys Acta Gene Regul. Mech. 2019; 1862:356–369. PubMed
Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C.P., McLaughlin P.J.et al. .. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014; 9:1482–1494. PubMed PMC
Desterro J.M.P., Keegan L.P., Lafarga M., Berciano M.T., O’Connell M., Carmo-Fonseca M.. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003; 116:1805–1818. PubMed
Strehblow A., Hallegger M., Jantsch M.F.. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol. Biol. Cell. 2002; 13:3822–3835. PubMed PMC
Poulsen H., Nilsson J., Damgaard C.K., Egebjerg J., Kjems J.. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 2001; 21:7862–7871. PubMed PMC
Ng S.K., Weissbach R., Ronson G.E., Scadden A.D.. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 2013; 41:9786–9799. PubMed PMC
Quin J., Sedmík J., Vukić D., Khan A., Keegan L.P., O’Connell M.A. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem. Sci. 2021; 46:758–771. PubMed
Hartner J.C., Schmittwolf C., Kispert A., Müller A.M., Higuchi M., Seeburg P.H.. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 2004; 279:4894–4902. PubMed
Hartner J.C., Walkley C.R., Lu J., Orkin S.H.. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009; 10:109–115. PubMed PMC
Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S.. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005; 6:981–988. PubMed
Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J.. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005; 437:1167–1172. PubMed
Liddicoat B.J., Piskol R., Chalk A.M., Ramaswami G., Higuchi M., Hartner J.C., Li J.B., Seeburg P.H., Walkley C.R.. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015; 349:1115–1120. PubMed PMC
Hu S.-B., Heraud-Farlow J., Sun T., Liang Z., Goradia A., Taylor S., Walkley C.R., Li J.B.. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Mol. Cell. 2023; 83:3869–3884. PubMed
Sinigaglia K., Cherian A., Du Q., Lacovich V., Vukic D., Melicherova J., Linhartova P., Zerad L., Stejskal S., Malik R.et al. .. An ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA inhibits PKR activation. Cell Rep. 2024; 43:114618. PubMed
Gannon H.S., Zou T., Kiessling M.K., Gao G.F., Cai D., Choi P.S., Ivan A.P., Buchumenski I., Berger A.C., Goldstein J.T.et al. .. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 2018; 9:5450. PubMed PMC
Freund E.C., Sapiro A.L., Li Q., Linder S., Moresco J.J., Yates I.I.I., Li J.B.. Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep. 2020; 31:107656. PubMed PMC
Cottrell K.A., Ryu S., Pierce J.R., Soto Torres L., Bohlin H.E., Schab A.M., Weber J.D.. Induction of viral mimicry upon loss of DHX9 and ADAR1 in breast cancer cells. Cancer Res. Commun. 2024; 4:986–1003. PubMed PMC
Patterson J.B., Samuel C.E.. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 1995; 15:5376–5388. PubMed PMC
Liu X., Abad L., Chatterjee L., Cristea I.M., Varjosalo M.. Mapping protein–protein interactions by mass spectrometry. Mass Spectrom. Rev. 2024; 10.1002/mas.21887. PubMed DOI PMC
Varjosalo M., Keskitalo S., Van Drogen A., Nurkkala H., Vichalkovski A., Aebersold R., Gstaiger M.. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013; 3:1306–1320. PubMed
Valente L., Nishikura K.. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 2007; 282:16054–16061. PubMed PMC
Yadav L., Tamene F., Goos H., van Drogen A., Katainen R., Aebersold R., Gstaiger M., Varjosalo M.. Systematic analysis of human protein phosphatase interactions and dynamics. Cell Syst. 2017; 4:430–444. PubMed
Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25:402–408. PubMed
R Studio Team RStudio: integrated development environment for R. 2015; Boston, MA: http://www.rstudio.com.
R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2023; Vienna, Austria: https://www.R-project.org.
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B.et al. .. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC
Roux K.J., Kim D.I., Burke B.. BioID: a screen for protein–protein interactions. Curr. Protoc. Protein Sci. 2013; 74:19.23.1–19.23.14. PubMed
Covelo-Molares H., Obrdlik A., Postulkova I., Dohnalkova M., Gregorova P., Ganji R., Potesil D., Gawriyski L., Varjosalo M., Vanacova S.. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res. 2021; 49:10895–10910. PubMed PMC
Meier F., Brunner A.D., Koch S., Koch H., Lubeck M., Krause M., Goedecke N., Decker J., Kosinski T., Park M.A.et al. .. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics. 2018; 17:2534–2545. PubMed PMC
Wisniewski J.R., Ostasiewicz P., Mann M.. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011; 10:3040–3049. PubMed
Liu X., Salokas K., Weldatsadik R.G., Gawriyski L., Varjosalo M.. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 2020; 15:3182–3211. PubMed
Teo G., Liu G., Zhang J., Nesvizhskii A.I., Gingras A.C., Choi H.. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J. Proteomics. 2014; 100:37–43. PubMed PMC
Mellacheruvu D., Wright Z., Couzens A.L., Lambert J.P., St-Denis N.A., Li T., Miteva Y.V., Hauri S., Sardiu M.E., Low T.Y.et al. .. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods. 2013; 10:730–736. PubMed PMC
Lazar C., Burger T., Wieczorek S.. imputeLCMD: A Collection of Methods for Left-Censored Missing Data Imputation. 2022; R package version 2.1https://CRAN.R-project.org/package=imputeLCMD.
Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W.. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022; 50:W216–W221. PubMed PMC
Rusinova I., Forster S., Yu S., Kannan A., Masse M., Cumming H., Chapman R., Hertzog P.J.. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013; 41:D1040–D1046. PubMed PMC
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S.et al. .. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023; 51:D638–D646. PubMed PMC
von Mering C., Huynen M., Jaeggi D., Schmidt S., Bork P., Snel B.. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003; 31:258–261. PubMed PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504. PubMed PMC
Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016; NY: Springer-Verlag.
Liu X., Salokas K., Tamene F., Jiu Y., Weldatsadik R.G., Ohman T., Varjosalo M.. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 2018; 9:1188. PubMed PMC
Varjosalo M., Keskitalo S., Van Drogen A., Nurkkala H., Vichalkovski A., Aebersold R., Gstaiger M.. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013; 3:1306–1320. PubMed
Blackburn K., Mbeunkui F., Mitra S.K., Mentzel T., Goshe M.B.. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 2010; 9:3621–3637. PubMed
Bilbao A., Varesio E., Luban J., Strambio-De-Castillia C., Hopfgartner G., Muller M., Lisacek F.. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics. 2015; 15:964–980. PubMed
Eckmann C.R., Neunteufl A., Pfaffstetter L., Jantsch M.F.. The Human but not the Xenopus RNA-editing enzyme ADAR1 has an Atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell. 2001; 12:1911–1924. PubMed PMC
Roux K.J., Kim D.I., Raida M., Burke B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012; 196:801–810. PubMed PMC
Nie Y., Ding L., Kao P.N., Braun R., Yang J.H.. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol. Cell. Biol. 2005; 25:6956–6963. PubMed PMC
Sapiro A.L., Freund E.C., Restrepo L., Qiao H.-H., Bhate A., Li Q., Ni J.-Q., Mosca T.J., Li J.B.. Zinc finger RNA-binding protein Zn72D regulates ADAR-mediated RNA editing in neurons. Cell Rep. 2020; 31:107654. PubMed PMC
Aktas T., Avsar Ilik I., Maticzka D., Bhardwaj V., Pessoa Rodrigues C., Mittler G., Manke T., Backofen R., Akhtar A.. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017; 544:115–119. PubMed
Hong H., An O., Chan T.H.M., Ng V.H.E., Kwok H.S., Lin J.S., Qi L., Han J., Tay D.J.T., Tang S.J.et al. .. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res. 2018; 46:7953–7969. PubMed PMC
Cottrell K.A., Andrews R.J., Bass B.L.. The competitive landscape of the dsRNA world. Mol. Cell. 2024; 84:107–119. PubMed PMC
Youn J.Y., Dunham W.H., Hong S.J., Knight J.D.R., Bashkurov M., Chen G.I., Bagci H., Rathod B., MacLeod G., Eng S.W.M.et al. .. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell. 2018; 69:517–532. PubMed
Markmiller S., Soltanieh S., Server K.L., Mak R., Jin W., Fang M.Y., Luo E.C., Krach F., Yang D., Sen A.et al. .. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell. 2018; 172:590–604. PubMed PMC
Choi Y., Um B., Na Y., Kim J., Kim J.S., Kim V.N.. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol. Cell. 2024; 84:1764–1782. PubMed
Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M.. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006; 34:D535–D539. PubMed PMC
Orchard S., Ammari M., Aranda B., Breuza L., Briganti L., Broackes-Carter F., Campbell N.H., Chavali G., Chen C., del-Toro N.et al. .. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014; 42:D358–D363. PubMed PMC
Quinones-Valdez G., Tran S.S., Jun H.I., Bahn J.H., Yang E.W., Zhan L., Brümmer A., Wei X., Van Nostrand E.L., Pratt G.A.et al. .. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2019; 2:19. PubMed PMC
Durfee L.A., Lyon N., Seo K., Huibregtse J.M.. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell. 2010; 38:722–732. PubMed PMC
Dastur A., Beaudenon S., Kelley M., Krug R.M., Huibregtse J.M.. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 2006; 281:4334–4338. PubMed
Pinto-Fernandez A., Salio M., Partridge T., Chen J., Vere G., Greenwood H., Olie C.S., Damianou A., Scott H.C., Pegg H.J.et al. .. Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity. Br. J. Cancer. 2021; 124:817–830. PubMed PMC
Huntzinger E., Sinteff J., Morlet B., Seraphin B.. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res. 2023; 51:9279–9293. PubMed PMC
Luqman-Fatah A., Watanabe Y., Uno K., Ishikawa F., Moran J.V., Miyoshi T.. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat. Commun. 2023; 14:203. PubMed PMC
Orecchini E., Doria M., Antonioni A., Galardi S., Ciafrè S.A., Frassinelli L., Mancone C., Montaldo C., Tripodi M., Michienzi A.. ADAR1 restricts LINE-1 retrotransposition. Nucleic Acids Res. 2017; 45:155–168. PubMed PMC
Rebouillat D., Hovanessian A.G.. The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Cytokine Res. 1999; 19:295–308. PubMed
Li Y., Banerjee S., Wang Y., Goldstein S.A., Dong B., Gaughan C., Silverman R.H., Weiss S.R.. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl Acad. Sci. U.S.A. 2016; 113:2241–2246. PubMed PMC
Wang Y., Holleufer A., Gad H.H., Hartmann R.. Length dependent activation of OAS proteins by dsRNA. Cytokine. 2020; 126:154867. PubMed
Li Y., Banerjee S., Goldstein S.A., Dong B., Gaughan C., Rath S., Donovan J., Korennykh A., Silverman R.H., Weiss S.R.. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife. 2017; 6:e25687. PubMed PMC
Thuy-Boun A.S., Thomas J.M., Grajo H.L., Palumbo C.M., Park S., Nguyen L.T., Fisher A.J., Beal P.A.. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res. 2020; 48:7958–7972. PubMed PMC
Guillen-Boixet J., Kopach A., Holehouse A.S., Wittmann S., Jahnel M., Schlussler R., Kim K., Trussina I., Wang J., Mateju D.et al. .. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell. 2020; 181:346–361. PubMed PMC
Yang P., Mathieu C., Kolaitis R.M., Zhang P., Messing J., Yurtsever U., Yang Z., Wu J., Li Y., Pan Q.et al. .. G3BP1 Is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020; 181:325–345. PubMed PMC
Weissbach R., Scadden A.D.. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA. 2012; 18:462–471. PubMed PMC
Corbet G.A., Burke J.M., Parker R.. Nucleic acid-protein condensates in innate immune signaling. EMBO J. 2023; 42:e111870. PubMed PMC
Banerjee S., Barraud P.. Functions of double-stranded RNA-binding domains in nucleocytoplasmic transport. RNA Biol. 2014; 11:1226–1232. PubMed PMC
Fritz J., Strehblow A., Taschner A., Schopoff S., Pasierbek P., Jantsch M.F.. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol. Cell. Biol. 2009; 29:1487–1497. PubMed PMC
Sakurai M., Shiromoto Y., Ota H., Song C., Kossenkov A.V., Wickramasinghe J., Showe L.C., Skordalakes E., Tang H.Y., Speicher D.W.et al. .. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 2017; 24:534–543. PubMed PMC
Barraud P., Banerjee S., Mohamed W.I., Jantsch M.F., Allain F.H.. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc. Natl Acad. Sci. U.S.A. 2014; 111:E1852–E1861. PubMed PMC
Shang Z., Zhang S., Wang J., Zhou L., Zhang X., Billadeau D.D., Yang P., Zhang L., Zhou F., Bai P.et al. .. TRIM25 predominately associates with anti-viral stress granules. Nat. Commun. 2024; 15:4127. PubMed PMC
Tang S.J., Shen H., An O., Hong H., Li J., Song Y., Han J., Tay D.J.T., Ng V.H.E., Bellido Molias F.et al. .. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat. Commun. 2020; 11:799. PubMed PMC
Kapoor U., Licht K., Amman F., Jakobi T., Martin D., Dieterich C., Jantsch M.F.. ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Res. 2020; 30:1107–1118. PubMed PMC
Solomon O., Oren S., Safran M., Deshet-Unger N., Akiva P., Jacob-Hirsch J., Cesarkas K., Kabesa R., Amariglio N., Unger R.et al. .. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA. 2013; 19:591–604. PubMed PMC
Shanmugam R., Zhang F., Srinivasan H., Charles Richard J.L., Liu K.I., Zhang X., Woo C.W.A., Chua Z.H.M., Buschdorf J.P., Meaney M.J.et al. .. SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates. Nucleic Acids Res. 2018; 46:7379–7395. PubMed PMC
De Cecco M., Ito T., Petrashen A.P., Elias A.E., Skvir N.J., Criscione S.W., Caligiana A., Brocculi G., Adney E.M., Boeke J.D.et al. .. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019; 566:73–78. PubMed PMC
Crow M.K. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010; 43:7–16. PubMed
Zhao K., Du J., Peng Y., Li P., Wang S., Wang Y., Hou J., Kang J., Zheng W., Hua S.et al. .. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun. 2018; 90:105–115. PubMed
Tunbak H., Enriquez-Gasca R., Tie C.H.C., Gould P.A., Mlcochova P., Gupta R.K., Fernandes L., Holt J., van der Veen A.G., Giampazolias E.et al. .. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 2020; 11:5387. PubMed PMC
Volkman H.E., Stetson D.B.. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 2014; 15:415–422. PubMed PMC
Larsen S.C., Sylvestersen K.B., Mund A., Lyon D., Mullari M., Madsen M.V., Daniel J.A., Jensen L.J., Nielsen M.L.. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci. Signal. 2016; 9:rs9. PubMed
Zhu Y., Wang X., Goff S.P., Gao G.. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. 2012; 31:4236–4246. PubMed PMC
Choudhury N.R., Heikel G., Michlewski G.. TRIM25 and its emerging RNA-binding roles in antiviral defense. Wiley Interdiscip. Rev. RNA. 2020; 11:e1588. PubMed
Li M.M., Lau Z., Cheung P., Aguilar E.G., Schneider W.M., Bozzacco L., Molina H., Buehler E., Takaoka A., Rice C.M.et al. .. TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLoS Pathog. 2017; 13:e1006145. PubMed PMC
Law L.M.J., Razooky B.S., Li M.M.H., You S., Jurado A., Rice C.M., MacDonald M.R.. ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog. 2019; 15:e1007798. PubMed PMC
Burke J.M., Lester E.T., Tauber D., Parker R.. RNase L promotes the formation of unique ribonucleoprotein granules distinct from stress granules. J. Biol. Chem. 2020; 295:1426–1438. PubMed PMC
Corbet G.A., Burke J.M., Bublitz G.R., Tay J.W., Parker R.. dsRNA-induced condensation of antiviral proteins modulates PKR activity. Proc. Natl Acad. Sci. U.S.A. 2022; 119:e2204235119. PubMed PMC
Onomoto K., Jogi M., Yoo J.-S., Narita R., Morimoto S., Takemura A., Sambhara S., Kawaguchi A., Osari S., Nagata K.et al. .. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One. 2012; 7:e43031. PubMed PMC
Perez-Riverol Y., Bai J., Bandla C., Garcia-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M.et al. .. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022; 50:D543–D552. PubMed PMC
Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence