• This record comes from PubMed

Distinct interactomes of ADAR1 nuclear and cytoplasmic protein isoforms and their responses to interferon induction

. 2024 Dec 11 ; 52 (22) : 14184-14204.

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
R01 GM129325 NIGMS NIH HHS - United States
GAČR 21-27329X
GAČR by 22-26278K
GAČR 20-11101S Grantová agentura České republiky

The RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is essential for correct functioning of innate immune responses. The ADAR1p110 isoform is mainly nuclear and ADAR1p150, which is interferon (IFN) inducible, is predominately cytoplasmic. Using three different methods - co-immunoprecipitation (co-IP) of endogenous ADAR1, Strep-tag co-IP and BioID with individual ADAR1 isoforms - a comprehensive interactome was generated during both homeostasis and the IFN response. Both known and novel interactors as well as editing regulators were identified. Nuclear proteins were detected as stable interactors with both ADAR1 isoforms. In contrast, BioID identified distinct protein networks for each ADAR1 isoform, with nuclear components observed with ADAR1p110 and components of cytoplasmic cellular condensates with ADAR1p150. RNase A digestion distinguished between distal and proximal interactors, as did a double-stranded RNA (dsRNA)-binding mutant of ADAR1 which demonstrated the importance of dsRNA binding for ADAR1 interactions. IFN treatment did not affect the core ADAR1 interactomes but resulted in novel interactions, the majority of which are proximal interactions retained after RNase A treatment. Short treatment with high molecular weight poly(I:C) during the IFN response resulted in dsRNA-binding-dependent changes in the proximal protein network of ADAR1p110 and association of the ADAR1p150 proximal protein network with some components of antiviral stress granules.

See more in PubMed

Sinigaglia K., Wiatrek D., Khan A., Michalik D., Sambrani N., Sedmik J., Vukic D., O’Connell M.A., Keegan L.P.. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim. Biophys Acta Gene Regul. Mech. 2019; 1862:356–369. PubMed

Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C.P., McLaughlin P.J.et al. .. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014; 9:1482–1494. PubMed PMC

Desterro J.M.P., Keegan L.P., Lafarga M., Berciano M.T., O’Connell M., Carmo-Fonseca M.. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003; 116:1805–1818. PubMed

Strehblow A., Hallegger M., Jantsch M.F.. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol. Biol. Cell. 2002; 13:3822–3835. PubMed PMC

Poulsen H., Nilsson J., Damgaard C.K., Egebjerg J., Kjems J.. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 2001; 21:7862–7871. PubMed PMC

Ng S.K., Weissbach R., Ronson G.E., Scadden A.D.. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 2013; 41:9786–9799. PubMed PMC

Quin J., Sedmík J., Vukić D., Khan A., Keegan L.P., O’Connell M.A. ADAR RNA modifications, the epitranscriptome and innate immunity. Trends Biochem. Sci. 2021; 46:758–771. PubMed

Hartner J.C., Schmittwolf C., Kispert A., Müller A.M., Higuchi M., Seeburg P.H.. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 2004; 279:4894–4902. PubMed

Hartner J.C., Walkley C.R., Lu J., Orkin S.H.. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2009; 10:109–115. PubMed PMC

Kawai T., Takahashi K., Sato S., Coban C., Kumar H., Kato H., Ishii K.J., Takeuchi O., Akira S.. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005; 6:981–988. PubMed

Meylan E., Curran J., Hofmann K., Moradpour D., Binder M., Bartenschlager R., Tschopp J.. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature. 2005; 437:1167–1172. PubMed

Liddicoat B.J., Piskol R., Chalk A.M., Ramaswami G., Higuchi M., Hartner J.C., Li J.B., Seeburg P.H., Walkley C.R.. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015; 349:1115–1120. PubMed PMC

Hu S.-B., Heraud-Farlow J., Sun T., Liang Z., Goradia A., Taylor S., Walkley C.R., Li J.B.. ADAR1p150 prevents MDA5 and PKR activation via distinct mechanisms to avert fatal autoinflammation. Mol. Cell. 2023; 83:3869–3884. PubMed

Sinigaglia K., Cherian A., Du Q., Lacovich V., Vukic D., Melicherova J., Linhartova P., Zerad L., Stejskal S., Malik R.et al. .. An ADAR1 dsRBD3-PKR kinase domain interaction on dsRNA inhibits PKR activation. Cell Rep. 2024; 43:114618. PubMed

Gannon H.S., Zou T., Kiessling M.K., Gao G.F., Cai D., Choi P.S., Ivan A.P., Buchumenski I., Berger A.C., Goldstein J.T.et al. .. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 2018; 9:5450. PubMed PMC

Freund E.C., Sapiro A.L., Li Q., Linder S., Moresco J.J., Yates I.I.I., Li J.B.. Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. Cell Rep. 2020; 31:107656. PubMed PMC

Cottrell K.A., Ryu S., Pierce J.R., Soto Torres L., Bohlin H.E., Schab A.M., Weber J.D.. Induction of viral mimicry upon loss of DHX9 and ADAR1 in breast cancer cells. Cancer Res. Commun. 2024; 4:986–1003. PubMed PMC

Patterson J.B., Samuel C.E.. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 1995; 15:5376–5388. PubMed PMC

Liu X., Abad L., Chatterjee L., Cristea I.M., Varjosalo M.. Mapping protein–protein interactions by mass spectrometry. Mass Spectrom. Rev. 2024; 10.1002/mas.21887. PubMed DOI PMC

Varjosalo M., Keskitalo S., Van Drogen A., Nurkkala H., Vichalkovski A., Aebersold R., Gstaiger M.. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013; 3:1306–1320. PubMed

Valente L., Nishikura K.. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 2007; 282:16054–16061. PubMed PMC

Yadav L., Tamene F., Goos H., van Drogen A., Katainen R., Aebersold R., Gstaiger M., Varjosalo M.. Systematic analysis of human protein phosphatase interactions and dynamics. Cell Syst. 2017; 4:430–444. PubMed

Livak K.J., Schmittgen T.D.. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25:402–408. PubMed

R Studio Team RStudio: integrated development environment for R. 2015; Boston, MA: http://www.rstudio.com.

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2023; Vienna, Austria: https://www.R-project.org.

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B.et al. .. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012; 9:676–682. PubMed PMC

Roux K.J., Kim D.I., Burke B.. BioID: a screen for protein–protein interactions. Curr. Protoc. Protein Sci. 2013; 74:19.23.1–19.23.14. PubMed

Covelo-Molares H., Obrdlik A., Postulkova I., Dohnalkova M., Gregorova P., Ganji R., Potesil D., Gawriyski L., Varjosalo M., Vanacova S.. The comprehensive interactomes of human adenosine RNA methyltransferases and demethylases reveal distinct functional and regulatory features. Nucleic Acids Res. 2021; 49:10895–10910. PubMed PMC

Meier F., Brunner A.D., Koch S., Koch H., Lubeck M., Krause M., Goedecke N., Decker J., Kosinski T., Park M.A.et al. .. Online parallel accumulation-serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteomics. 2018; 17:2534–2545. PubMed PMC

Wisniewski J.R., Ostasiewicz P., Mann M.. High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 2011; 10:3040–3049. PubMed

Liu X., Salokas K., Weldatsadik R.G., Gawriyski L., Varjosalo M.. Combined proximity labeling and affinity purification-mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 2020; 15:3182–3211. PubMed

Teo G., Liu G., Zhang J., Nesvizhskii A.I., Gingras A.C., Choi H.. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J. Proteomics. 2014; 100:37–43. PubMed PMC

Mellacheruvu D., Wright Z., Couzens A.L., Lambert J.P., St-Denis N.A., Li T., Miteva Y.V., Hauri S., Sardiu M.E., Low T.Y.et al. .. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat. Methods. 2013; 10:730–736. PubMed PMC

Lazar C., Burger T., Wieczorek S.. imputeLCMD: A Collection of Methods for Left-Censored Missing Data Imputation. 2022; R package version 2.1https://CRAN.R-project.org/package=imputeLCMD.

Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W.. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022; 50:W216–W221. PubMed PMC

Rusinova I., Forster S., Yu S., Kannan A., Masse M., Cumming H., Chapman R., Hertzog P.J.. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013; 41:D1040–D1046. PubMed PMC

Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., Gable A.L., Fang T., Doncheva N.T., Pyysalo S.et al. .. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023; 51:D638–D646. PubMed PMC

von Mering C., Huynen M., Jaeggi D., Schmidt S., Bork P., Snel B.. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003; 31:258–261. PubMed PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13:2498–2504. PubMed PMC

Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016; NY: Springer-Verlag.

Liu X., Salokas K., Tamene F., Jiu Y., Weldatsadik R.G., Ohman T., Varjosalo M.. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 2018; 9:1188. PubMed PMC

Varjosalo M., Keskitalo S., Van Drogen A., Nurkkala H., Vichalkovski A., Aebersold R., Gstaiger M.. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013; 3:1306–1320. PubMed

Blackburn K., Mbeunkui F., Mitra S.K., Mentzel T., Goshe M.B.. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J. Proteome Res. 2010; 9:3621–3637. PubMed

Bilbao A., Varesio E., Luban J., Strambio-De-Castillia C., Hopfgartner G., Muller M., Lisacek F.. Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics. 2015; 15:964–980. PubMed

Eckmann C.R., Neunteufl A., Pfaffstetter L., Jantsch M.F.. The Human but not the Xenopus RNA-editing enzyme ADAR1 has an Atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell. 2001; 12:1911–1924. PubMed PMC

Roux K.J., Kim D.I., Raida M., Burke B.. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 2012; 196:801–810. PubMed PMC

Nie Y., Ding L., Kao P.N., Braun R., Yang J.H.. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol. Cell. Biol. 2005; 25:6956–6963. PubMed PMC

Sapiro A.L., Freund E.C., Restrepo L., Qiao H.-H., Bhate A., Li Q., Ni J.-Q., Mosca T.J., Li J.B.. Zinc finger RNA-binding protein Zn72D regulates ADAR-mediated RNA editing in neurons. Cell Rep. 2020; 31:107654. PubMed PMC

Aktas T., Avsar Ilik I., Maticzka D., Bhardwaj V., Pessoa Rodrigues C., Mittler G., Manke T., Backofen R., Akhtar A.. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature. 2017; 544:115–119. PubMed

Hong H., An O., Chan T.H.M., Ng V.H.E., Kwok H.S., Lin J.S., Qi L., Han J., Tay D.J.T., Tang S.J.et al. .. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer. Nucleic Acids Res. 2018; 46:7953–7969. PubMed PMC

Cottrell K.A., Andrews R.J., Bass B.L.. The competitive landscape of the dsRNA world. Mol. Cell. 2024; 84:107–119. PubMed PMC

Youn J.Y., Dunham W.H., Hong S.J., Knight J.D.R., Bashkurov M., Chen G.I., Bagci H., Rathod B., MacLeod G., Eng S.W.M.et al. .. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell. 2018; 69:517–532. PubMed

Markmiller S., Soltanieh S., Server K.L., Mak R., Jin W., Fang M.Y., Luo E.C., Krach F., Yang D., Sen A.et al. .. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell. 2018; 172:590–604. PubMed PMC

Choi Y., Um B., Na Y., Kim J., Kim J.S., Kim V.N.. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol. Cell. 2024; 84:1764–1782. PubMed

Stark C., Breitkreutz B.J., Reguly T., Boucher L., Breitkreutz A., Tyers M.. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006; 34:D535–D539. PubMed PMC

Orchard S., Ammari M., Aranda B., Breuza L., Briganti L., Broackes-Carter F., Campbell N.H., Chavali G., Chen C., del-Toro N.et al. .. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 2014; 42:D358–D363. PubMed PMC

Quinones-Valdez G., Tran S.S., Jun H.I., Bahn J.H., Yang E.W., Zhan L., Brümmer A., Wei X., Van Nostrand E.L., Pratt G.A.et al. .. Regulation of RNA editing by RNA-binding proteins in human cells. Commun. Biol. 2019; 2:19. PubMed PMC

Durfee L.A., Lyon N., Seo K., Huibregtse J.M.. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell. 2010; 38:722–732. PubMed PMC

Dastur A., Beaudenon S., Kelley M., Krug R.M., Huibregtse J.M.. Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem. 2006; 281:4334–4338. PubMed

Pinto-Fernandez A., Salio M., Partridge T., Chen J., Vere G., Greenwood H., Olie C.S., Damianou A., Scott H.C., Pegg H.J.et al. .. Deletion of the deISGylating enzyme USP18 enhances tumour cell antigenicity and radiosensitivity. Br. J. Cancer. 2021; 124:817–830. PubMed PMC

Huntzinger E., Sinteff J., Morlet B., Seraphin B.. HELZ2: a new, interferon-regulated, human 3'-5' exoribonuclease of the RNB family is expressed from a non-canonical initiation codon. Nucleic Acids Res. 2023; 51:9279–9293. PubMed PMC

Luqman-Fatah A., Watanabe Y., Uno K., Ishikawa F., Moran J.V., Miyoshi T.. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat. Commun. 2023; 14:203. PubMed PMC

Orecchini E., Doria M., Antonioni A., Galardi S., Ciafrè S.A., Frassinelli L., Mancone C., Montaldo C., Tripodi M., Michienzi A.. ADAR1 restricts LINE-1 retrotransposition. Nucleic Acids Res. 2017; 45:155–168. PubMed PMC

Rebouillat D., Hovanessian A.G.. The human 2',5'-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J. Interferon Cytokine Res. 1999; 19:295–308. PubMed

Li Y., Banerjee S., Wang Y., Goldstein S.A., Dong B., Gaughan C., Silverman R.H., Weiss S.R.. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc. Natl Acad. Sci. U.S.A. 2016; 113:2241–2246. PubMed PMC

Wang Y., Holleufer A., Gad H.H., Hartmann R.. Length dependent activation of OAS proteins by dsRNA. Cytokine. 2020; 126:154867. PubMed

Li Y., Banerjee S., Goldstein S.A., Dong B., Gaughan C., Rath S., Donovan J., Korennykh A., Silverman R.H., Weiss S.R.. Ribonuclease L mediates the cell-lethal phenotype of double-stranded RNA editing enzyme ADAR1 deficiency in a human cell line. eLife. 2017; 6:e25687. PubMed PMC

Thuy-Boun A.S., Thomas J.M., Grajo H.L., Palumbo C.M., Park S., Nguyen L.T., Fisher A.J., Beal P.A.. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res. 2020; 48:7958–7972. PubMed PMC

Guillen-Boixet J., Kopach A., Holehouse A.S., Wittmann S., Jahnel M., Schlussler R., Kim K., Trussina I., Wang J., Mateju D.et al. .. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell. 2020; 181:346–361. PubMed PMC

Yang P., Mathieu C., Kolaitis R.M., Zhang P., Messing J., Yurtsever U., Yang Z., Wu J., Li Y., Pan Q.et al. .. G3BP1 Is a tunable switch that triggers phase separation to assemble stress granules. Cell. 2020; 181:325–345. PubMed PMC

Weissbach R., Scadden A.D.. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA. 2012; 18:462–471. PubMed PMC

Corbet G.A., Burke J.M., Parker R.. Nucleic acid-protein condensates in innate immune signaling. EMBO J. 2023; 42:e111870. PubMed PMC

Banerjee S., Barraud P.. Functions of double-stranded RNA-binding domains in nucleocytoplasmic transport. RNA Biol. 2014; 11:1226–1232. PubMed PMC

Fritz J., Strehblow A., Taschner A., Schopoff S., Pasierbek P., Jantsch M.F.. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol. Cell. Biol. 2009; 29:1487–1497. PubMed PMC

Sakurai M., Shiromoto Y., Ota H., Song C., Kossenkov A.V., Wickramasinghe J., Showe L.C., Skordalakes E., Tang H.Y., Speicher D.W.et al. .. ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay. Nat. Struct. Mol. Biol. 2017; 24:534–543. PubMed PMC

Barraud P., Banerjee S., Mohamed W.I., Jantsch M.F., Allain F.H.. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc. Natl Acad. Sci. U.S.A. 2014; 111:E1852–E1861. PubMed PMC

Shang Z., Zhang S., Wang J., Zhou L., Zhang X., Billadeau D.D., Yang P., Zhang L., Zhou F., Bai P.et al. .. TRIM25 predominately associates with anti-viral stress granules. Nat. Commun. 2024; 15:4127. PubMed PMC

Tang S.J., Shen H., An O., Hong H., Li J., Song Y., Han J., Tay D.J.T., Ng V.H.E., Bellido Molias F.et al. .. Cis- and trans-regulations of pre-mRNA splicing by RNA editing enzymes influence cancer development. Nat. Commun. 2020; 11:799. PubMed PMC

Kapoor U., Licht K., Amman F., Jakobi T., Martin D., Dieterich C., Jantsch M.F.. ADAR-deficiency perturbs the global splicing landscape in mouse tissues. Genome Res. 2020; 30:1107–1118. PubMed PMC

Solomon O., Oren S., Safran M., Deshet-Unger N., Akiva P., Jacob-Hirsch J., Cesarkas K., Kabesa R., Amariglio N., Unger R.et al. .. Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR). RNA. 2013; 19:591–604. PubMed PMC

Shanmugam R., Zhang F., Srinivasan H., Charles Richard J.L., Liu K.I., Zhang X., Woo C.W.A., Chua Z.H.M., Buschdorf J.P., Meaney M.J.et al. .. SRSF9 selectively represses ADAR2-mediated editing of brain-specific sites in primates. Nucleic Acids Res. 2018; 46:7379–7395. PubMed PMC

De Cecco M., Ito T., Petrashen A.P., Elias A.E., Skvir N.J., Criscione S.W., Caligiana A., Brocculi G., Adney E.M., Boeke J.D.et al. .. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature. 2019; 566:73–78. PubMed PMC

Crow M.K. Long interspersed nuclear elements (LINE-1): potential triggers of systemic autoimmune disease. Autoimmunity. 2010; 43:7–16. PubMed

Zhao K., Du J., Peng Y., Li P., Wang S., Wang Y., Hou J., Kang J., Zheng W., Hua S.et al. .. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun. 2018; 90:105–115. PubMed

Tunbak H., Enriquez-Gasca R., Tie C.H.C., Gould P.A., Mlcochova P., Gupta R.K., Fernandes L., Holt J., van der Veen A.G., Giampazolias E.et al. .. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 2020; 11:5387. PubMed PMC

Volkman H.E., Stetson D.B.. The enemy within: endogenous retroelements and autoimmune disease. Nat. Immunol. 2014; 15:415–422. PubMed PMC

Larsen S.C., Sylvestersen K.B., Mund A., Lyon D., Mullari M., Madsen M.V., Daniel J.A., Jensen L.J., Nielsen M.L.. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci. Signal. 2016; 9:rs9. PubMed

Zhu Y., Wang X., Goff S.P., Gao G.. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. 2012; 31:4236–4246. PubMed PMC

Choudhury N.R., Heikel G., Michlewski G.. TRIM25 and its emerging RNA-binding roles in antiviral defense. Wiley Interdiscip. Rev. RNA. 2020; 11:e1588. PubMed

Li M.M., Lau Z., Cheung P., Aguilar E.G., Schneider W.M., Bozzacco L., Molina H., Buehler E., Takaoka A., Rice C.M.et al. .. TRIM25 enhances the antiviral action of zinc-finger antiviral protein (ZAP). PLoS Pathog. 2017; 13:e1006145. PubMed PMC

Law L.M.J., Razooky B.S., Li M.M.H., You S., Jurado A., Rice C.M., MacDonald M.R.. ZAP’s stress granule localization is correlated with its antiviral activity and induced by virus replication. PLoS Pathog. 2019; 15:e1007798. PubMed PMC

Burke J.M., Lester E.T., Tauber D., Parker R.. RNase L promotes the formation of unique ribonucleoprotein granules distinct from stress granules. J. Biol. Chem. 2020; 295:1426–1438. PubMed PMC

Corbet G.A., Burke J.M., Bublitz G.R., Tay J.W., Parker R.. dsRNA-induced condensation of antiviral proteins modulates PKR activity. Proc. Natl Acad. Sci. U.S.A. 2022; 119:e2204235119. PubMed PMC

Onomoto K., Jogi M., Yoo J.-S., Narita R., Morimoto S., Takemura A., Sambhara S., Kawaguchi A., Osari S., Nagata K.et al. .. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One. 2012; 7:e43031. PubMed PMC

Perez-Riverol Y., Bai J., Bandla C., Garcia-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M.et al. .. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022; 50:D543–D552. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...