The fractional soliton solutions of the dynamical system of equations for ion sound and Langmuir waves: a comparative analysis
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39681598
PubMed Central
PMC11649910
DOI
10.1038/s41598-024-73983-8
PII: 10.1038/s41598-024-73983-8
Knihovny.cz E-resources
- Keywords
- Fractional derivatives, New extended direct algebraic method, The ion sound as well as Langmuir waves, Traveling wave solutions,
- Publication type
- Journal Article MeSH
In light of the ponderomotive force, this article focuses on establishing the exact wave structures of the ion sound system. It is the result of non-linear force and affects a charged particle oscillating in an inhomogeneous electromagnetic field. By using the Riemann-Liouville operator, β -operator, and Atangana-Baleanu fractional analysis, the examined equation-which consists of the normalized electric field of the Langmuir oscillation and normalized density perturbation-is thoroughly examined. The solutions can be obtained with the help of a relatively new integration tool, the new extended direct algebraic method. We extract various wave structures in bright, dark, combo, ark, bright, and singular soliton solutions, among other forms, from soliton solutions. This method is simple and quick, and it can be used with more non-linear models or systems. Using the Mathematica software package, a graphically comparative analysis of some solutions is also presented here, taking appropriate parametric values into consideration.
Department of Computer Science and Mathematics Lebanese American University Byblos Lebanon
Department of Mathematics College of Science King Khalid University Abha Saudi Arabia
Department of Mathematics University of Management and Technology Lahore Pakistan
IT4Innovations VSB Technical University of Ostrava Ostrava Czech Republic
See more in PubMed
Zhu, C., Al-Dossari, M., Rezapour, S., Alsallami, S. A. M. & Gunay, B. Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation. Results Phys.59, 107601 (2024).
Li, Z. et al. Self-supervised dynamic learning for long-term high-fidelity image transmission through unstabilized diffusive media. Nat. Commun.15(1), 1498 (2024). PubMed PMC
Deng, Z., Jin, Y., Gao, W. & Wang, B. A closed-loop directional dynamics control with LQR active trailer steering for articulated heavy vehicle. Proc. Inst. Mech. Eng. Part D J. Automob. Eng.237(12), 2741–2758 (2022).
Hui, Z. et al. Switchable single- to multiwavelength conventional soliton and bound-state soliton generated from a NbTe2 saturable absorber-based passive mode-locked erbium-doped fiber laser. ACS Appl. Mater. Interfaces16(17), 22344–22360 (2024). PubMed
Liu, L., Zhang, S., Zhang, L., Pan, G. & Yu, J. Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network. IEEE Trans. Cybern.53(6), 4015–4028 (2023). PubMed
Pesch, H. J. Optimal control of dynamical systems governed by partial differential equations: a perspective from real-life applications. IFAC Proc. Vol.45(2), 1–12 (2012).
Billings, S. A. & Peyton Jones, J. C. Mapping non-linear integro-differential equations into the frequency domain. Int. J. Control52(4), 863–879 (1990).
Martinez-Luaces, V. Modelling and inverse-modelling: experiences with ODE linear systems in engineering courses. Int. J. Math. Educ. Sci. Technol.40(2), 259–268 (2009).
Ahmed-Ali, T., Giri, F. & Krstic, M. Observer design for a class of nonlinear ODE-PDE cascade systems. Syst. Control Lett.83, 19–27 (2015).
Krstic, M. & Smyshlyaev, A. Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst. Control Lett.57(9), 750–758 (2008).
Zhu, C., Al-Dossari, M., Rezapour, S. & Gunay, B. On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation. Results Phys.57, 107431 (2024).
Zhu, C., Al-Dossari, M., Rezapour, S., Shateyi, S. & Gunay, B. Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation. Results Phys.56, 107298 (2024).
Han, Q. & Chu, F. Nonlinear dynamic model for skidding behavior of angular contact ball bearings. J. Sound Vib.354, 219–235 (2015).
Li, M. et al. Scaling-basis Chirplet transform. IEEE Trans. Ind. Electron.68(9), 8777–8788 (2021).
Zhou, Y. et al. A comprehensive aerodynamic-thermal-mechanical design method for fast response turbocharger applied in aviation piston engines. Propuls. Power Res.13(2), 145–165 (2024).
Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul.44, 460–481 (2017).
Khalil, R., Horani, M. . Al. ., Yousef, A. & Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math.264, 65–70 (2014).
Scott, A. C. Encyclopedia of Nonlinear Science (Routledge, Taylor and Francis Group, 2005).
Sousa, J. & de Oliveira, E. C. A new truncated M-fractional derivative type unifying some fractional derivative types with classical properties. Int. J. Anal. Appl.16, 83–96 (2018).
Jumarie, G. Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl.51, 1367–1376 (2006).
Caputo, M. & Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl.1, 73–85 (2015).
Atangana, A. & Baleanu, D. New fractional derivative without nonlocal and nonsingular kernel: theory and application to heat transfer model. Therm. Sci.20, 763–769 (2016).
Kumar, D., Singh, J. & Baleanu, D. A hybrid computational approach for Klein–Gordon equations on Cantor sets. Nonlinear Dyn.10.1007/s11071-016-3057 (2016).
Kumar, D., Singh, J. & Baleanu, D. Numerical computation of a fractional model of differential-difference equation. J. Comput. Nonlinear Dyn.11, 061004 (2016).
Kumar, D., Singh, J., Qurashi, M. A. & Baleanu, D. Analysis of logistic equation pertaining to a new fractional derivative wif non-singular kernel. Adv. Mech. Eng.9, 1–8 (2017).
Atangana, A. New concept of rate of change: a decolonization of calculus. In: ICMMAAC, Jaipur, 7–9 Aug (2020)
Park, C. et al. Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher-order dispersive cubic-quintic’’. Alex. Eng. J.59, 1425–1433 (2020).
Bilal, M., Younas, U. & Ren, J. Propagation of diverse solitary wave structures to the dynamical soliton model in mathematical physics. Opt. Quantum Electron.53, 1–20 (2021).
Bilal, M. & Ren, J. Dynamics of exact solitary wave solutions to the conformable time-space fractional model with reliable analytical approaches. Opt. Quantum Electron.54(1), 40 (2022).
Bilal, M., Ren, J., Alsubaie, A. S. A., Mahmoud, K. H. & Inc, M. Dynamics of nonlinear diverse wave propagation to Improved Boussinesq model in weakly dispersive medium of shallow waters or ion acoustic waves using efficient technique. Opt. Quantum Electron.56(1), 21 (2024).
Bilal, M., Ren, J., Inc, M. & Alqahtani, R. T. Dynamics of solitons and weakly ion-acoustic wave structures to the nonlinear dynamical model via analytical techniques. Opt. Quantum Electron.55(7), 656 (2023).
Arefin, M. A., Zaman, U. H. M., Uddin, M. H. & Inc, M. Consistent travelling wave characteristic of space-time fractional modified Benjamin–Bona–Mahony and the space-time fractional Duffing models. Opt. Quantum Electron.56(4), 588 (2024).
Arefin, M. A., Saeed, M. A., Akbar, M. A. & Uddin, M. H. Analytical behavior of weakly dispersive surface and internal waves in the ocean. J. Ocean Eng. Sci.7(4), 305–312 (2022).
Zaman, U. H. M., Arefin, M. A., Akbar, M. A. & Uddin, M. H. Study of the soliton propagation of the fractional nonlinear type evolution equation through a novel technique. PLoS One18(5), e0285178 (2023). PubMed PMC
Zaman, U. H. M., Arefin, M. A., Akbar, M. A. & Uddin, M. H. Explore dynamical soliton propagation to the fractional order nonlinear evolution equation in optical fiber systems. Opt. Quantum Electron.55(14), 1295 (2023).
Khatun, M. A., Arefin, M. A., Akbar, M. A. & Uddin, M. H. Existence and uniqueness solution analysis of time-fractional unstable nonlinear Schrodinger equation. Results Phys.57, 107363 (2024).
Nawaz, B., Ali, K., Rizvi, S. T. R. & Younis, M. Soliton solutions for quintic complex Ginzburg-Landau model. Superlatt. Microstruct.110, 49–56 (2017).
Bluman, G. W. & Kumei, S. Symmetries and Differential Equations (Springer, Berlin, 1989).
Zhu, H. P. & Pan, Z. H. Combined Akhmediev breather and Kuznetsov–Ma solitons in a two-dimensional graded index waveguide. Laser Phys.24(4) (2014).
Wang, M. & Li, X. Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation. Chaos Solitons Fractals24, 1257–1268 (2005).
Fan, E. G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A.277, 212–218 (2000).
Kai, Y. & Yin, Z. Linear structure and soliton molecules of Sharma–Tasso–Olver–Burgers equation. Phys. Lett. A452, 128430 (2022).
Zhang, X., Hu, Z. & Liu, Y. Fast generation of GHZ-like states using collective-spin XYZ model. Phys. Rev. Lett.132(11), 113402 (2024). PubMed
Kai, Y., Ji, J. & Yin, Z. Study of the generalization of regularized long-wave equation. Nonlinear Dyn.107(3), 2745–2752 (2022).
Khater, M. M. A., Behzad, G., Nisar, K. S. & Kumar, D. Novel exact solutions of the fractional Bogoyavlensky–Konopelchenko equation involving the Atangana–Baleanu–Riemann derivative. Alex. Eng. J.59, 2957–2967 (2020).
Haiyong, Q., Khater, M. & Attia, R. A. M. Inelastic interaction and blowup new solutions of nonlinear and dispersive long gravity waves. J. Funct. Spaces10.1155/2020/5362989 (2020).
Yue, C. et al. Onexplicit wave solutions of the fractional nonlinear DSW system via the modified Khater method. Fractals10.1142/S0218348X20400344 (2020).
Aty, A. H. A., Khater, M. M. A., Attia, R. A. M. & Eleuch, H. Exact traveling and nano-solitons wave solitons of the ionic waves propagating along microtubules in living cells. Mathematics8, 697 (2020).
Inc, M., Yusuf, A., Aliyu, A. I. & Baleanu, D. Time-fractional Cahn–Allen and time-fractional Klein–Gordon equations: Lie symmetry analysis, explicit solutions and convergence analysis. Phys. A493, 94–106 (2018).
Qureshi, S., Yusuf, A., Shaikh, A. A. & Inc, M. Transmission dynamics of varicella zoster virus modeled by classical and novel fractional operators using real statistical data. Phys. A534, 122–149 (2019).
Baskonus, H. M. & Bulut, H. New wave behaviors of the system of equations for the ion sound and Langmuir waves. Waves Random Complex Media10.1080/17455030.2016.1181811 (2016).
Seadawya, A. R., Kumarc, D., Hosseini, K. & Samadani, F. The system of equations for the ion sound and Langmuir waves and its new exact solutions. Results Phys.9, 1631–1634 (2018).
Demiray, S. T. & Bulut, H. New exact solutions of the system of equations for the ion sound and Langmuir waves by ETEM. Math. Comput. Appl.10.3390/mca21020011 (2016).
Vidojevic, S. Shape modeling with family of Pearson distributions: Langmuir waves. Adv. Space Res.54, 1326–1330 (2014).
Manafian, J. Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tanh-expansion method. Optik127, 4222–4245 (2016).
Mohyud-Din, S. T., Yildirim, A. & Sezer, S. A. Numerical soliton solutions of improved Boussinesq equation. Int. J. Numer. Methods Heat Fluid Flow21, 822–827 (2011).
Ali, K., Ali, T. & Orkun, T. Applying the new extended direct algebraic method to solve the equation of obliquely interacting waves in shallow waters. J. Ocean Univ. China19, 772–780 (2020).