Analysis of the Influence of Different Diameters of De Laval Supersonic Nozzles on the Key Splashing Parameters of Remaining Slag

. 2024 Nov 26 ; 17 (23) : . [epub] 20241126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39685232

Grantová podpora
04.04.170.70210, 16.16.170.7998/B407 and IDUB 4044 AGH University of Krakow

The paper is devoted to the analysis of a supersonic nozzle system effect in gas-cooled lances on the technological parameters of slag splashing in an oxygen converter. Simulation calculations were carried out, taking into account the parameters of nozzles used in the technological lines of converter steel plants in Ukraine and Brazil. The problems were solved in several stages. The simulation results of the first stage revealed the influence of different nozzle diameters dcr, dex and the inlet pressure before nozzle P0 on the nitrogen consumption of one nozzle Vн. Calculations also showed the influence of the critical dcr and output dex of the nozzle diameter and nitrogen flow through one nozzle Vн on the power of injected nitrogen N1 and the depth of penetration of the stream hx into the liquid slag. The second stage was dedicated to numerical simulation of the slag splashing process, including an array of results from the first stage. The thermodynamic and physical parameters were calculated using our own computer program, while 3D simulations were conducted using the ANSYS Fluent 2023 R2 program.

Zobrazit více v PubMed

Sado S., Jastrzębska I., Zelik W., Szczerba J. Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review. Materials. 2023;16:7396. doi: 10.3390/ma16237396. PubMed DOI PMC

Yemelyanov V.A., Yemelyanova N.Y., Nedelkin A.A., Zarudnaya M.V. Neural network to diagnose lining condition. IOP Conf. Ser. Mater. Sci. Eng. 2018;327:022107. doi: 10.1088/1757-899X/327/2/022107. DOI

Sado S., Zelik W., Lech R. Use of Machine Learning for modelling the wear of MgO-C refractories in Basic Oxygen Furnace. J. Ceram. Process. Res. 2022;23:421–429. doi: 10.36410/jcpr.2022.23.4.421. DOI

Yang G., Li B., Sun M., Qin D., Zhong L. Numerical Simulation of the Slag Splashing Process in A 120 Ton Top-Blown Converter. Metals. 2023;13:940. doi: 10.3390/met13050940. DOI

He L., Chen M. Study of Slag Splashing Behavior in a 120 t Converter Based on Physical and Mathematical Simulation. Steel Res. Int. 2023;94:2300227. doi: 10.1002/srin.202300227. DOI

Maia B.T., dos Reis Lima W., Santos J.P.M., Braga B.M., Rocha L., de Oliveira J.R., Sinelnikov V. Slag Splashing—Cold Model Comparison and Equations for Industry Setup; Proceedings of the AISTech—Iron and Steel Technology Conference Proceedings 2023 Conference; Detroit, MI, USA. 8–11 May 2023; pp. 845–861. DOI

Sinelnikov V., Szucki M., Merder T., Pieprzyca J., Kalisz D. Physical and Numerical Modeling of the Slag Splashing Process. Materials. 2021;14:2289. doi: 10.3390/ma14092289. PubMed DOI PMC

Sinelnikov V.O., Kalisz D., Żak P.L., Kuzemko R.D. Power increase of supersonic jets in oxygen converter. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012078. doi: 10.1088/1757-899X/461/1/012078. DOI

Kharlashin P.S., Kuzemko R.D., Sinelnikov V.O. New Developments in Mining Engineering. Theoretical and Practical Solutions of Mineral Resources Mining. Taylor & Francis Group; London, UK: 2015. Influence of different factors and physical impacts on the power of flowing supersonic jet during slag spraying in the converter; pp. 597–602.

Mulbah C., Kang C., Mao N., Zhang W., Shaikh A.R., Teng S. A review of VOF methods for simulating bubble dynamics. Prog. Nucl. Energy. 2022;154:104478. doi: 10.1016/j.pnucene.2022.104478. DOI

Qian J.Y., Li X.J., Wu Z., Jin Z.J., Sunden B. A comprehensive review on liquid-liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluid. Nanofluidics. 2019;23:116. doi: 10.1007/s10404-019-2280-4. DOI

Novosád J., Dvořák L., Peukert P. CFD simulation of wettability of laser-structured surfaces. EPJ Web Conf. 2022;269:01043. doi: 10.1051/epjconf/202226901043. DOI

Wang Y., Cao L., Vanieerschot M., Cheng Z., Blanpain B., Guo M. Modelling of gas injection into a viscous liquid through a top-submerged lance. Chem. Eng. Sci. 2020;212:115359. doi: 10.1016/j.ces.2019.115359. DOI

Zhang H., Yuan Z.-F., Zhao H.-X., Xu B.-S., Liu K., Ma B.-W. Numerical Simulation of CO2 Used for Slag Splashing Process in Converter. Steel Res. Int. 2023;94:2300025. doi: 10.1002/srin.202300025. DOI

Zhang H., Yuan Z., Mei L., Peng X., Liu K., Zhao H. The Behavior of CO2 Supersonic Jets in the Converter Slag-Splashing Process. J. Sustain. Metall. 2022;8:1803–1815. doi: 10.1007/s40831-022-00607-8. DOI

Zhao H.X., Yuan Z., Wang W., Pan Y., Li S. A novel method of recycling CO2 for slag splashing in converter. J. Iron Steel Res. Int. 2010;17:11–16. doi: 10.1016/S1006-706X(10)60190-2. DOI

Protopopov E.V., Kalimullin R.F., Chernyatevich A.G., Kharlashin P.S., Chernysheva N.A. Supersonic Jest Injected into Converter Slag. Steel Transl. 2012;42:711–715. doi: 10.3103/S0967091212100142. DOI

Kharlashin P.S., Kuzemko R.D., Protopopov E.V., Feiler S.V., Kharin A.K. Adding Slag to a Supersonic Jet in an Converter Slag. Steel Transl. 2015;45:100–104. doi: 10.3103/S0967091215020084. DOI

Ansys 2023 R2: Ansys Fluent What’s New. [(accessed on 8 October 2024)]. Available online: https://www.ansys.com/webinars/ansys-2023-r2-ansys-fluent-whats-new.

Ghauri M.A.Z. CFD Analysis of NACA 64A-206 Airfoil in Supersonic Flow. National University of Sciences and Technology; Islamabad, Pakistan: 2023. Technical Report of the NACA 64A-206 Project. DOI

Domagala M., Fabis-Domagala J. A Review of the CFD Method in the Modeling of Flow Forces. Energies. 2023;16:6059. doi: 10.3390/en16166059. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...