Analysis of the Influence of Different Diameters of De Laval Supersonic Nozzles on the Key Splashing Parameters of Remaining Slag
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
04.04.170.70210, 16.16.170.7998/B407 and IDUB 4044
AGH University of Krakow
PubMed
39685232
PubMed Central
PMC11642171
DOI
10.3390/ma17235796
PII: ma17235796
Knihovny.cz E-zdroje
- Klíčová slova
- numerical modeling, optimization of process, recycling of waste material, supersonic jets, thermodynamic parameters of splashing,
- Publikační typ
- časopisecké články MeSH
The paper is devoted to the analysis of a supersonic nozzle system effect in gas-cooled lances on the technological parameters of slag splashing in an oxygen converter. Simulation calculations were carried out, taking into account the parameters of nozzles used in the technological lines of converter steel plants in Ukraine and Brazil. The problems were solved in several stages. The simulation results of the first stage revealed the influence of different nozzle diameters dcr, dex and the inlet pressure before nozzle P0 on the nitrogen consumption of one nozzle Vн. Calculations also showed the influence of the critical dcr and output dex of the nozzle diameter and nitrogen flow through one nozzle Vн on the power of injected nitrogen N1 and the depth of penetration of the stream hx into the liquid slag. The second stage was dedicated to numerical simulation of the slag splashing process, including an array of results from the first stage. The thermodynamic and physical parameters were calculated using our own computer program, while 3D simulations were conducted using the ANSYS Fluent 2023 R2 program.
Lumar Metals Rodovia MG 232 km 09 70 Santana do Paraíso 35167 000 MG Brazil
Polytechnic Faculty University of Kalisz Nowy Świat Str 4 62 800 Kalisz Poland
Zobrazit více v PubMed
Sado S., Jastrzębska I., Zelik W., Szczerba J. Current State of Application of Machine Learning for Investigation of MgO-C Refractories: A Review. Materials. 2023;16:7396. doi: 10.3390/ma16237396. PubMed DOI PMC
Yemelyanov V.A., Yemelyanova N.Y., Nedelkin A.A., Zarudnaya M.V. Neural network to diagnose lining condition. IOP Conf. Ser. Mater. Sci. Eng. 2018;327:022107. doi: 10.1088/1757-899X/327/2/022107. DOI
Sado S., Zelik W., Lech R. Use of Machine Learning for modelling the wear of MgO-C refractories in Basic Oxygen Furnace. J. Ceram. Process. Res. 2022;23:421–429. doi: 10.36410/jcpr.2022.23.4.421. DOI
Yang G., Li B., Sun M., Qin D., Zhong L. Numerical Simulation of the Slag Splashing Process in A 120 Ton Top-Blown Converter. Metals. 2023;13:940. doi: 10.3390/met13050940. DOI
He L., Chen M. Study of Slag Splashing Behavior in a 120 t Converter Based on Physical and Mathematical Simulation. Steel Res. Int. 2023;94:2300227. doi: 10.1002/srin.202300227. DOI
Maia B.T., dos Reis Lima W., Santos J.P.M., Braga B.M., Rocha L., de Oliveira J.R., Sinelnikov V. Slag Splashing—Cold Model Comparison and Equations for Industry Setup; Proceedings of the AISTech—Iron and Steel Technology Conference Proceedings 2023 Conference; Detroit, MI, USA. 8–11 May 2023; pp. 845–861. DOI
Sinelnikov V., Szucki M., Merder T., Pieprzyca J., Kalisz D. Physical and Numerical Modeling of the Slag Splashing Process. Materials. 2021;14:2289. doi: 10.3390/ma14092289. PubMed DOI PMC
Sinelnikov V.O., Kalisz D., Żak P.L., Kuzemko R.D. Power increase of supersonic jets in oxygen converter. IOP Conf. Ser. Mater. Sci. Eng. 2018;461:012078. doi: 10.1088/1757-899X/461/1/012078. DOI
Kharlashin P.S., Kuzemko R.D., Sinelnikov V.O. New Developments in Mining Engineering. Theoretical and Practical Solutions of Mineral Resources Mining. Taylor & Francis Group; London, UK: 2015. Influence of different factors and physical impacts on the power of flowing supersonic jet during slag spraying in the converter; pp. 597–602.
Mulbah C., Kang C., Mao N., Zhang W., Shaikh A.R., Teng S. A review of VOF methods for simulating bubble dynamics. Prog. Nucl. Energy. 2022;154:104478. doi: 10.1016/j.pnucene.2022.104478. DOI
Qian J.Y., Li X.J., Wu Z., Jin Z.J., Sunden B. A comprehensive review on liquid-liquid two-phase flow in microchannel: Flow pattern and mass transfer. Microfluid. Nanofluidics. 2019;23:116. doi: 10.1007/s10404-019-2280-4. DOI
Novosád J., Dvořák L., Peukert P. CFD simulation of wettability of laser-structured surfaces. EPJ Web Conf. 2022;269:01043. doi: 10.1051/epjconf/202226901043. DOI
Wang Y., Cao L., Vanieerschot M., Cheng Z., Blanpain B., Guo M. Modelling of gas injection into a viscous liquid through a top-submerged lance. Chem. Eng. Sci. 2020;212:115359. doi: 10.1016/j.ces.2019.115359. DOI
Zhang H., Yuan Z.-F., Zhao H.-X., Xu B.-S., Liu K., Ma B.-W. Numerical Simulation of CO2 Used for Slag Splashing Process in Converter. Steel Res. Int. 2023;94:2300025. doi: 10.1002/srin.202300025. DOI
Zhang H., Yuan Z., Mei L., Peng X., Liu K., Zhao H. The Behavior of CO2 Supersonic Jets in the Converter Slag-Splashing Process. J. Sustain. Metall. 2022;8:1803–1815. doi: 10.1007/s40831-022-00607-8. DOI
Zhao H.X., Yuan Z., Wang W., Pan Y., Li S. A novel method of recycling CO2 for slag splashing in converter. J. Iron Steel Res. Int. 2010;17:11–16. doi: 10.1016/S1006-706X(10)60190-2. DOI
Protopopov E.V., Kalimullin R.F., Chernyatevich A.G., Kharlashin P.S., Chernysheva N.A. Supersonic Jest Injected into Converter Slag. Steel Transl. 2012;42:711–715. doi: 10.3103/S0967091212100142. DOI
Kharlashin P.S., Kuzemko R.D., Protopopov E.V., Feiler S.V., Kharin A.K. Adding Slag to a Supersonic Jet in an Converter Slag. Steel Transl. 2015;45:100–104. doi: 10.3103/S0967091215020084. DOI
Ansys 2023 R2: Ansys Fluent What’s New. [(accessed on 8 October 2024)]. Available online: https://www.ansys.com/webinars/ansys-2023-r2-ansys-fluent-whats-new.
Ghauri M.A.Z. CFD Analysis of NACA 64A-206 Airfoil in Supersonic Flow. National University of Sciences and Technology; Islamabad, Pakistan: 2023. Technical Report of the NACA 64A-206 Project. DOI
Domagala M., Fabis-Domagala J. A Review of the CFD Method in the Modeling of Flow Forces. Energies. 2023;16:6059. doi: 10.3390/en16166059. DOI