Analysis of Static and Cyclic Properties of 316L and AlSi10Mg in Conventional Casting and Additive Manufacturing
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39685296
PubMed Central
PMC11643481
DOI
10.3390/ma17235861
PII: ma17235861
Knihovny.cz E-resources
- Keywords
- 316L, additive manufacturing, aluminium alloy, fatigue properties, tension and torsion cyclic tests,
- Publication type
- Journal Article MeSH
The paper presents the original results of cyclic testing of materials that are identical in chemical composition but produced by two different technologies: conventional metallurgy and additive manufacturing. For the aluminium alloy AlSi10Mg and the austenitic steel 316L, tensile curves, tension-compression and torsion alternating fatigue curves are experimentally obtained and presented. The experimental results are compared for two fabrication technologies-conventional metallurgy and additive DLMS technology. The results indicate a significant effect of anisotropy on the fatigue performance of the AM materials and a different slope of the fatigue life curves in the cyclic torsion versus cyclic tension-compression. The static and, in particular, the fatigue properties of both materials are discussed in relation to the microstructure of the materials after conventional production and after additive manufacturing. This comparison allowed us to explain both the causes of the anisotropy of the AM materials and the different slope of the curves for normal and shear stresses under cyclic loading. Using the example of the strength assessment of bicycle frames, the possibility of progressively wider use of additive manufacturing for load-bearing structures is presented.
See more in PubMed
Fard M.G., Sharifianjazi F., Kazemi S.S., Rostamani H., Bathaei M.S. Laser-Based Additive Manufacturing of Magnesium Alloys for Bone Tissue Engineering Applications: From Chemistry to Clinic. J. Manuf. Mater. Process. 2022;6:158. doi: 10.3390/jmmp6060158. DOI
Langelandsvik G., Akselsen O.M., Furu T., Roven H.J. Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing. Materials. 2021;14:5370. doi: 10.3390/ma14185370. PubMed DOI PMC
Erdelyi H., Lammens N., Van Paepegem W., van Hooreweder B. Impact of Additive Manufacturing Process Conditions on the Dynamic Performance of Metallic Components; Proceedings of the NAFEMS 18 Dach Conference; Bamberg, Germany. 14–16 May 2018; [(accessed on 15 October 2024)]. Available online: https://www.researchgate.net/publication/332349797.
Wohlers T.T., Caffrey T. Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Wohlers Associates; Fort Collins, CO, USA: 2015.
Lewandowski J.J., Seifi M., Clarke D.R. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016;46:151–186. doi: 10.1146/annurev-matsci-070115-032024. DOI
Rehmer B., Bayram F., Ávila Calderón L.A., Mohr G., Skrotzki B. Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L. Sci. Data. 2023;10:474. doi: 10.1038/s41597-023-02387-6. PubMed DOI PMC
Molaei R., Fatemi A. Fatigue Design with Additive Manufactured Metals. Procedia Eng. 2018;213:5–16. doi: 10.1016/j.proeng.2018.02.002. DOI
Javidrad H., Koc B., Bayraktar H., Simsek U., Gunaydin K. Fatigue performance of metal additive manufacturing: A comprehensive overview. Virtual Phys. Prototyp. 2024;19:e2302556. doi: 10.1080/17452759.2024.2302556. DOI
Solberg K., Berto F. What is going on with fatigue of additively manufactured metals? Mat. Des. Process Commun. 2019;1:84–87. doi: 10.1002/mdp2.84. DOI
Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue. 2017;98:14–31. doi: 10.1016/j.ijfatigue.2017.01.001. DOI
Tang W., Tang Z., Lu W., Wang S., Yi M. Modeling and prediction of fatigue properties of additively manufactured metals. Acta Mech. Solida Sin. 2023;36:181–213. doi: 10.1007/s10338-023-00380-5. DOI
Sanaei N., Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021;117:100724. doi: 10.1016/j.pmatsci.2020.100724. DOI
Sanaei N., Fatemi A. Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals. Theor. Appl. Fract. Mech. 2020;108:102638. doi: 10.1016/j.tafmec.2020.102638. DOI
Solberg K., Guan S., Razavi N., Welo T., Chan K.C., Berto F. Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness. Fat. Fract. Eng. Mater. Struct. 2019;42:2043–2052. doi: 10.1111/ffe.13077. DOI
Gerov M.V., Vladislavskaya E.Y., Terentev V.F., Prosvirnin D.V., Antonova O.S., Kolmakov A.G. Fatigue Strength of an AlSi10Mg Alloy Fabricated by Selective Laser Melting. Russ. Metall. 2018;4:392–397. doi: 10.1134/S0036029519040098. DOI
Chmelko V., Šulko M., Škriniarová J., Margetin M., Gašparík M., Koščo T., Semeš M. Strength and Cyclic Properties of Additive vs. Conventionally Produced Material AlSi10Mg. Materials. 2023;16:2598. doi: 10.3390/ma16072598. PubMed DOI PMC
Nezhadfar P., Thompson S., Saharan A., Phan N., Shamsaei N. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior. Addit. Manuf. 2021;47:102292. doi: 10.1016/j.addma.2021.102292. DOI
Du Plessis A., Beretta S. Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Add. Manuf. 2020;35:101424. doi: 10.1016/j.addma.2020.101424. DOI
Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of Aluminium alloys, Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019;106:100578. doi: 10.1016/j.pmatsci.2019.100578. DOI
Dillera J., Sieberta D., Radlbecka C., Mensingera M. PBF-LB/M/316L vs. hot-rolled 316L–comparison of cyclic plastic material behavior. Procedia Struct. Integr. 2022;42:58–65. doi: 10.1016/j.prostr.2022.12.006. DOI
Werner T., Madia M., Zerbst U. Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L. Procedia Struct. Integr. 2022;38:554–563. doi: 10.1016/j.prostr.2022.03.056. DOI
Stern F., Kleinhorst J., Tenkamp J., Walther F. Investigation of the anisotropic cyclic damage behavior of selective laser melted AISI 316L stainless steel. Fat. Fract. Eng. Mater. Struct. 2019;42:2422–2430. doi: 10.1111/ffe.13029. DOI
Barricelli L., Patriarca L., du Plessis A., Beretta S. Orientation-dependent fatigue assessment of Ti6Al4V manufactured by L-PBF: Size of surface features and shielding effect. Int. J. Fatigue. 2023;168:107401. doi: 10.1016/j.ijfatigue.2022.107401. DOI
Liang X., Hor A., Robert C., Lin F., Morel F. Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L. Int. J. Fatigue. 2023;170:107506. doi: 10.1016/j.ijfatigue.2023.107506. DOI
Shrestha R., Simsiriwong J., Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Addit. Manuf. 2019;28:23–38. doi: 10.1016/j.addma.2019.04.011. DOI
Lu H., Pan J., Gu Y., Xiao J., Ma C., Yu N. Comparison of melt evolution and flow mechanisms of Inconel 718, Ti6Al4V, 304 stainless steel, and AlSi10Mg manufactured by laser powder bed fusion, structures, and properties after heat treatments. Mater. Sci. Eng. A. 2023;865:144649. doi: 10.1016/j.msea.2023.144649. DOI
Xu Z., Wang Q., Wang X.S., Tan C.H., Guo M.H., Gao P.B. High cycle fatigue performance of AlSi10mg alloy produced by selective laser melting. Mech. Mater. 2020;148:103499. doi: 10.1016/j.mechmat.2020.103499. DOI
Pekok M.A., Setchi R., Ryan M., Han Q., Gu D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021;112:175–192. doi: 10.1007/s00170-020-06346-y. DOI
Zhang J., Yuan W., Song B., Yin S., Wang X., Wei Q., Shi Y. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Technol. 2022;1:100035. doi: 10.1016/j.apmate.2022.100035. DOI
Le V.-D., Pessard E., Morel F., Prigent S. Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: The role of defects on scatter and statistical size effect. Int. J. Fatigue. 2020;140:105811. doi: 10.1016/j.ijfatigue.2020.105811. DOI
Molaei R., Fatemi A., Sanaei N., Pegues J., Shamsaei N., Shao S., Li P., Warner D.H., Phan N. Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. Int. J. Fatigue. 2020;132:105363. doi: 10.1016/j.ijfatigue.2019.105363. DOI
Cui L., Jiang F., Peng R.L., Mousavian R.T., Yang Z., Moverare J. Dependence of microstructures on fatigue performance of polycrystals: A comparative study of conventional and additively manufactured 316L stainless steel. Int. J. Plast. 2022;149:103172. doi: 10.1016/j.ijplas.2021.103172. DOI
Socie D.F., Marquis G.B. Multiaxial Fatigue. Society of Automotive Engineers Inc.; Warrendale, PA, USA: 2000.
Chmelko V., Margetin M. The performance of selected multiax-ial criteria under tension/torsion loading conditions. Int. J. Fatigue. 2020;135:105532. doi: 10.1016/j.ijfatigue.2020.105532. DOI
Le V.-D., Pessard E., Morel F., Edy F. Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach. Eng. Fract. Mech. 2019;214:410–426. doi: 10.1016/j.engfracmech.2019.03.048. DOI
Du Plessis A., Yadroitsava I., Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020;187:108385. doi: 10.1016/j.matdes.2019.108385. DOI
Andreau O., Pessard E., Koutiri I., Peyre P., Saintier N. Influence of the position and size of various deterministic defects on the high cycle fatigue resistance of a 316L steel manufactured by laser powder bed fusion. Int. J. Fatigue. 2021;143:105930. doi: 10.1016/j.ijfatigue.2020.105930. DOI
Zhang C., Zhu H., Liao H., Cheng Y., Hu Z., Zeng X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int. J. Fatigue. 2018;116:513–522. doi: 10.1016/j.ijfatigue.2018.07.016. DOI
Sajadi F., Tiemann J.-M., Bandari N., Darabi A.C., Mola J., Schmauder S. Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment. Metals. 2021;11:683. doi: 10.3390/met11050683. DOI
Ribeiro A.S., Abílio M.P., de Jesus A.M.P. Aluminium Alloys, Theory and Applications. InTechOpen; London, UK: 2011. Fatigue Behaviour of Welded Joints Made of 6061-T651 Aluminium Alloy. DOI
Margetin M., Chmelko V., Sulko M., Ďurka R., Koščo T. Fatigue Lifetime Analysis of a Bicycle Frame Made by Additive Manufacturing Technology from AlSi10Mg. Metals. 2022;12:1277. doi: 10.3390/met12081277. DOI
Kinazo Ebike. [(accessed on 15 October 2024)]. Available online: https://www.kinazo.com/