• This record comes from PubMed

Analysis of Static and Cyclic Properties of 316L and AlSi10Mg in Conventional Casting and Additive Manufacturing

. 2024 Nov 29 ; 17 (23) : . [epub] 20241129

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The paper presents the original results of cyclic testing of materials that are identical in chemical composition but produced by two different technologies: conventional metallurgy and additive manufacturing. For the aluminium alloy AlSi10Mg and the austenitic steel 316L, tensile curves, tension-compression and torsion alternating fatigue curves are experimentally obtained and presented. The experimental results are compared for two fabrication technologies-conventional metallurgy and additive DLMS technology. The results indicate a significant effect of anisotropy on the fatigue performance of the AM materials and a different slope of the fatigue life curves in the cyclic torsion versus cyclic tension-compression. The static and, in particular, the fatigue properties of both materials are discussed in relation to the microstructure of the materials after conventional production and after additive manufacturing. This comparison allowed us to explain both the causes of the anisotropy of the AM materials and the different slope of the curves for normal and shear stresses under cyclic loading. Using the example of the strength assessment of bicycle frames, the possibility of progressively wider use of additive manufacturing for load-bearing structures is presented.

See more in PubMed

Fard M.G., Sharifianjazi F., Kazemi S.S., Rostamani H., Bathaei M.S. Laser-Based Additive Manufacturing of Magnesium Alloys for Bone Tissue Engineering Applications: From Chemistry to Clinic. J. Manuf. Mater. Process. 2022;6:158. doi: 10.3390/jmmp6060158. DOI

Langelandsvik G., Akselsen O.M., Furu T., Roven H.J. Review of Aluminum Alloy Development for Wire Arc Additive Manufacturing. Materials. 2021;14:5370. doi: 10.3390/ma14185370. PubMed DOI PMC

Erdelyi H., Lammens N., Van Paepegem W., van Hooreweder B. Impact of Additive Manufacturing Process Conditions on the Dynamic Performance of Metallic Components; Proceedings of the NAFEMS 18 Dach Conference; Bamberg, Germany. 14–16 May 2018; [(accessed on 15 October 2024)]. Available online: https://www.researchgate.net/publication/332349797.

Wohlers T.T., Caffrey T. Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Wohlers Associates; Fort Collins, CO, USA: 2015.

Lewandowski J.J., Seifi M., Clarke D.R. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016;46:151–186. doi: 10.1146/annurev-matsci-070115-032024. DOI

Rehmer B., Bayram F., Ávila Calderón L.A., Mohr G., Skrotzki B. Elastic modulus data for additively and conventionally manufactured variants of Ti-6Al-4V, IN718 and AISI 316 L. Sci. Data. 2023;10:474. doi: 10.1038/s41597-023-02387-6. PubMed DOI PMC

Molaei R., Fatemi A. Fatigue Design with Additive Manufactured Metals. Procedia Eng. 2018;213:5–16. doi: 10.1016/j.proeng.2018.02.002. DOI

Javidrad H., Koc B., Bayraktar H., Simsek U., Gunaydin K. Fatigue performance of metal additive manufacturing: A comprehensive overview. Virtual Phys. Prototyp. 2024;19:e2302556. doi: 10.1080/17452759.2024.2302556. DOI

Solberg K., Berto F. What is going on with fatigue of additively manufactured metals? Mat. Des. Process Commun. 2019;1:84–87. doi: 10.1002/mdp2.84. DOI

Yadollahi A., Shamsaei N. Additive manufacturing of fatigue resistant materials: Challenges and opportunities. Int. J. Fatigue. 2017;98:14–31. doi: 10.1016/j.ijfatigue.2017.01.001. DOI

Tang W., Tang Z., Lu W., Wang S., Yi M. Modeling and prediction of fatigue properties of additively manufactured metals. Acta Mech. Solida Sin. 2023;36:181–213. doi: 10.1007/s10338-023-00380-5. DOI

Sanaei N., Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: A state-of-the-art review. Prog. Mater. Sci. 2021;117:100724. doi: 10.1016/j.pmatsci.2020.100724. DOI

Sanaei N., Fatemi A. Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals. Theor. Appl. Fract. Mech. 2020;108:102638. doi: 10.1016/j.tafmec.2020.102638. DOI

Solberg K., Guan S., Razavi N., Welo T., Chan K.C., Berto F. Fatigue of additively manufactured 316L stainless steel: The influence of porosity and surface roughness. Fat. Fract. Eng. Mater. Struct. 2019;42:2043–2052. doi: 10.1111/ffe.13077. DOI

Gerov M.V., Vladislavskaya E.Y., Terentev V.F., Prosvirnin D.V., Antonova O.S., Kolmakov A.G. Fatigue Strength of an AlSi10Mg Alloy Fabricated by Selective Laser Melting. Russ. Metall. 2018;4:392–397. doi: 10.1134/S0036029519040098. DOI

Chmelko V., Šulko M., Škriniarová J., Margetin M., Gašparík M., Koščo T., Semeš M. Strength and Cyclic Properties of Additive vs. Conventionally Produced Material AlSi10Mg. Materials. 2023;16:2598. doi: 10.3390/ma16072598. PubMed DOI PMC

Nezhadfar P., Thompson S., Saharan A., Phan N., Shamsaei N. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior. Addit. Manuf. 2021;47:102292. doi: 10.1016/j.addma.2021.102292. DOI

Du Plessis A., Beretta S. Killer notches: The effect of as-built surface roughness on fatigue failure in AlSi10Mg produced by laser powder bed fusion. Add. Manuf. 2020;35:101424. doi: 10.1016/j.addma.2020.101424. DOI

Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R. 3D printing of Aluminium alloys, Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019;106:100578. doi: 10.1016/j.pmatsci.2019.100578. DOI

Dillera J., Sieberta D., Radlbecka C., Mensingera M. PBF-LB/M/316L vs. hot-rolled 316L–comparison of cyclic plastic material behavior. Procedia Struct. Integr. 2022;42:58–65. doi: 10.1016/j.prostr.2022.12.006. DOI

Werner T., Madia M., Zerbst U. Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L. Procedia Struct. Integr. 2022;38:554–563. doi: 10.1016/j.prostr.2022.03.056. DOI

Stern F., Kleinhorst J., Tenkamp J., Walther F. Investigation of the anisotropic cyclic damage behavior of selective laser melted AISI 316L stainless steel. Fat. Fract. Eng. Mater. Struct. 2019;42:2422–2430. doi: 10.1111/ffe.13029. DOI

Barricelli L., Patriarca L., du Plessis A., Beretta S. Orientation-dependent fatigue assessment of Ti6Al4V manufactured by L-PBF: Size of surface features and shielding effect. Int. J. Fatigue. 2023;168:107401. doi: 10.1016/j.ijfatigue.2022.107401. DOI

Liang X., Hor A., Robert C., Lin F., Morel F. Effects of building direction and loading mode on the high cycle fatigue strength of the laser powder bed fusion 316L. Int. J. Fatigue. 2023;170:107506. doi: 10.1016/j.ijfatigue.2023.107506. DOI

Shrestha R., Simsiriwong J., Shamsaei N. Fatigue behavior of additive manufactured 316L stainless steel parts: Effects of layer orientation and surface roughness. Addit. Manuf. 2019;28:23–38. doi: 10.1016/j.addma.2019.04.011. DOI

Lu H., Pan J., Gu Y., Xiao J., Ma C., Yu N. Comparison of melt evolution and flow mechanisms of Inconel 718, Ti6Al4V, 304 stainless steel, and AlSi10Mg manufactured by laser powder bed fusion, structures, and properties after heat treatments. Mater. Sci. Eng. A. 2023;865:144649. doi: 10.1016/j.msea.2023.144649. DOI

Xu Z., Wang Q., Wang X.S., Tan C.H., Guo M.H., Gao P.B. High cycle fatigue performance of AlSi10mg alloy produced by selective laser melting. Mech. Mater. 2020;148:103499. doi: 10.1016/j.mechmat.2020.103499. DOI

Pekok M.A., Setchi R., Ryan M., Han Q., Gu D. Effect of process parameters on the microstructure and mechanical properties of AA2024 fabricated using selective laser melting. Int. J. Adv. Manuf. Technol. 2021;112:175–192. doi: 10.1007/s00170-020-06346-y. DOI

Zhang J., Yuan W., Song B., Yin S., Wang X., Wei Q., Shi Y. Towards understanding metallurgical defect formation of selective laser melted wrought aluminum alloys. Adv. Powder Technol. 2022;1:100035. doi: 10.1016/j.apmate.2022.100035. DOI

Le V.-D., Pessard E., Morel F., Prigent S. Fatigue behaviour of additively manufactured Ti-6Al-4V alloy: The role of defects on scatter and statistical size effect. Int. J. Fatigue. 2020;140:105811. doi: 10.1016/j.ijfatigue.2020.105811. DOI

Molaei R., Fatemi A., Sanaei N., Pegues J., Shamsaei N., Shao S., Li P., Warner D.H., Phan N. Fatigue of additive manufactured Ti-6Al-4V, Part II: The relationship between microstructure, material cyclic properties, and component performance. Int. J. Fatigue. 2020;132:105363. doi: 10.1016/j.ijfatigue.2019.105363. DOI

Cui L., Jiang F., Peng R.L., Mousavian R.T., Yang Z., Moverare J. Dependence of microstructures on fatigue performance of polycrystals: A comparative study of conventional and additively manufactured 316L stainless steel. Int. J. Plast. 2022;149:103172. doi: 10.1016/j.ijplas.2021.103172. DOI

Socie D.F., Marquis G.B. Multiaxial Fatigue. Society of Automotive Engineers Inc.; Warrendale, PA, USA: 2000.

Chmelko V., Margetin M. The performance of selected multiax-ial criteria under tension/torsion loading conditions. Int. J. Fatigue. 2020;135:105532. doi: 10.1016/j.ijfatigue.2020.105532. DOI

Le V.-D., Pessard E., Morel F., Edy F. Interpretation of the fatigue anisotropy of additively manufactured TA6V alloys via a fracture mechanics approach. Eng. Fract. Mech. 2019;214:410–426. doi: 10.1016/j.engfracmech.2019.03.048. DOI

Du Plessis A., Yadroitsava I., Yadroitsev I. Effects of defects on mechanical properties in metal additive manufacturing: A review focusing on X-ray tomography insights. Mater. Des. 2020;187:108385. doi: 10.1016/j.matdes.2019.108385. DOI

Andreau O., Pessard E., Koutiri I., Peyre P., Saintier N. Influence of the position and size of various deterministic defects on the high cycle fatigue resistance of a 316L steel manufactured by laser powder bed fusion. Int. J. Fatigue. 2021;143:105930. doi: 10.1016/j.ijfatigue.2020.105930. DOI

Zhang C., Zhu H., Liao H., Cheng Y., Hu Z., Zeng X. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg. Int. J. Fatigue. 2018;116:513–522. doi: 10.1016/j.ijfatigue.2018.07.016. DOI

Sajadi F., Tiemann J.-M., Bandari N., Darabi A.C., Mola J., Schmauder S. Fatigue improvement of AlSi10Mg fabricated by laser-based powder bed fusion through heat treatment. Metals. 2021;11:683. doi: 10.3390/met11050683. DOI

Ribeiro A.S., Abílio M.P., de Jesus A.M.P. Aluminium Alloys, Theory and Applications. InTechOpen; London, UK: 2011. Fatigue Behaviour of Welded Joints Made of 6061-T651 Aluminium Alloy. DOI

Margetin M., Chmelko V., Sulko M., Ďurka R., Koščo T. Fatigue Lifetime Analysis of a Bicycle Frame Made by Additive Manufacturing Technology from AlSi10Mg. Metals. 2022;12:1277. doi: 10.3390/met12081277. DOI

Kinazo Ebike. [(accessed on 15 October 2024)]. Available online: https://www.kinazo.com/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...