Extension of the Side Distance Measurement Aspect Ratio in the Measurement of a Slot or Bore Using a Commercial Laser Triangulation Sensor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO12000
Czech Technical University in Prague
PubMed
39686271
PubMed Central
PMC11644912
DOI
10.3390/s24237734
PII: s24237734
Knihovny.cz E-zdroje
- Klíčová slova
- aspect ratio, bore, distance measurement, edge, laser triangulation, mirror, slot,
- Publikační typ
- časopisecké články MeSH
We propose a new commercial laser triangulation sensor modification to enable the measurement of slots or bores side distance. The study showed the possibility of extending the sensor depth range for a slot or bore side distance measurement using a bypass of the illumination laser beam compared to a simple single mirror attachment to the sensor probe. We derived relations allowing for evaluation of the modified sensor side measurement range in desired depth based on the sensor parameters and the reflective mirror size and position. We demonstrated the functionality of the proposed measurement arrangement with an attachment to the commercial laser triangulation sensor and assessed the side-wall distance measurement. The results show the correct measurement depth and range prediction and the ability to perform side surface distance measurements at depths of more than 3.5 times the slot size.
Zobrazit více v PubMed
Dorsch R.G., Häusler G., Herrmann J.M. Laser triangulation: Fundamental uncertainty in distance measurement. Appl. Opt. 1994;33:1306–1314. doi: 10.1364/AO.33.001306. PubMed DOI
Harding K. Handbook of Optical Dimensional Metrology. Taylor & Francis; Abingdon, UK: 2013.
Swojak N., Wieczorowski M., Jakubowicz M. Assessment of selected metrological properties of laser triangulation sensors. Measurement. 2021;176:109190. doi: 10.1016/j.measurement.2021.109190. DOI
Pigeon S., Lapointe-Pinel B. Using a Slit to Suppress Optical Aberrations in Laser Triangulation Sensors. Sensors. 2024;24:2662. doi: 10.3390/s24082662. PubMed DOI PMC
Daneshpanah M., Harding K. Surface sensitivity reduction in laser triangulation sensors; Proceedings of the SPIE 8133, Dimensional Optical Metrology and Inspection for Practical Applications, 81330O; San Diego, CA, USA. 22–23 August 2011.
Kyung-Chan K., Se-Baek O., Jong-Ahn K., Soohyun K., Yoon K.K. Compensation of surface inclination for detecting in optical triangulation sensors; Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IMTC); Baltimore, MD, USA. 1–4 May 2000; pp. 1292–1296.
Li B., Li F., Liu H., Cai H., Mao X., Peng F. A measurement strategy and an error-compensation model for the on-machine laser measurement of large-scale free-form surfaces. Meas. Sci. Technol. 2014;25:015204. doi: 10.1088/0957-0233/25/1/015204. DOI
Li F., Xiong Z., Li B. An error compensation method of laser displacement sensor in the inclined surface measurement; Proceedings of the Applied Optics and Photonics China (AOPC2015); Beijing, China. 5–7 May 2015.
Li S., Yang Y., Jia X., Chen M. The impact and compensation of tilt factors upon the surface measurement error. Optik. 2016;127:7367–7373. doi: 10.1016/j.ijleo.2016.05.004. DOI
Zhuojiang N., Wei T., Hui Z. Laser pointing error analysis and compensation method of low-power laser diode source applied to triangulation ranging system. Rev. Sci. Instrum. 2021;92:103001. PubMed
Zhao Z.C., Ding D.W., Fu Y.C. Error identification and compensation for a laser displacement sensor based on on-machine measurement. Optik. 2021;225:165902. doi: 10.1016/j.ijleo.2020.165902. DOI
Sun B., Wang J. Application of the laser displacement sensor in the large-diameter aspheric parabolic mirror detection. Int. J. Adv. Manuf. Technol. 2018;99:1579–1588. doi: 10.1007/s00170-018-2557-x. DOI
Muralikrishnan B., Ren W., Everett D., Stanfield E., Doiron T. Performance evaluation experiments on a laser spot triangulation probe. Measurement. 2012;45:333–343. doi: 10.1016/j.measurement.2011.11.012. DOI
Chugui Y.V. 3D optical measuring technologies and systems for industrial applications; Proceedings of the SPIE 5856, Optical Measurement Systems for Industrial Inspection IV; Munich, Germany. 13–17 June 2005.
Wakayama T., Machia K., Yoshizawa T. Small size probe for inner profile measurement of pipes using optical fiber ring beam device; Proceedings of the SPIE 85630L, Optical Metrology and Inspection for Industrial Applications II; Beijing, China. 5–8 November 2012;
Hartrumpf M., Munser R. Optical three-dimensional measurements by radially symmetric structured light projection. Appl. Opt. 1997;36:2923–2928. doi: 10.1364/AO.36.002923. PubMed DOI
Cui J., Feng K., Hu Y., Li J., Tan J. A twin fiber Bragg grating probe for the dimensional measurement of microholes. IEEE Photonics Technol. Lett. 2014;26:17. doi: 10.1109/LPT.2014.2336238. DOI
Clarke T.A. Optical 3-D Measurement Techniques III. Wichmann; Karlsruhe, Germany: 1995. The development of an optical triangulation pipe profiling instrument; pp. 331–340.
Li X.Q., Wang Z., Fu L.H. A Laser-Based Measuring System for Online Quality Control of Car Engine Block. Sensors. 2016;16:1877. doi: 10.3390/s16111877. PubMed DOI PMC
Dong E., Cao R., Hao X. Research on the inner bore profile detecting system of railgun. Measurement. 2020;150:107053. doi: 10.1016/j.measurement.2019.107053. DOI
Hu J., Zhou W., Chen A., Cai J., Yu J., Cui Z., Li D. In Situ Pipe Prover Volume Measurement Method. Sensors. 2024;24:4873. doi: 10.3390/s24154873. PubMed DOI PMC
Huang H.L., Jywe W.Y., Liu C.H., Duan L., Wang M.S. Development of a novel laser-based measuring system for the thread profile of ballscrew. Opt. Lasers Eng. 2010;48:1012–1018. doi: 10.1016/j.optlaseng.2010.05.002. DOI
Tong Q., Jiao C., Huang H., Li G., Ding Z., Yuan F. An automatic measuring method and system using laser triangulation scanning for the parameters of a screw thread. Meas. Sci. Technol. 2014;25:035202. doi: 10.1088/0957-0233/25/3/035202. DOI
Dong Z., Sun X., Chen C., Sun M. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread. Sensors. 2018;18:1192. doi: 10.3390/s18041192. PubMed DOI PMC
Hošek J., Linduška P. Simple Modification of a Commercial Laser Triangulation Sensor for Distance Measurement of Slot and Bore Side Surfaces. Sensors. 2021;21:6911. doi: 10.3390/s21206911. PubMed DOI PMC
Scheimpflug T. Improved Method and Apparatus for the Systematic Alteration or Distortion of Plane Pictures and Images by Means of Lenses and Mirrors for Photography and for Other Purposes. No. 1196. GB Patent. 1904 May 12;
Mikš A., Novák J., Novák P. Analysis of imaging for laser triangulation sensors under Scheimpflug rule. Opt. Exp. 2013;21:18225–18235. doi: 10.1364/OE.21.018225. PubMed DOI
Fisher R.B., Naidu D.K. A comparison of algorithms for subpixel peak detection. In: Sanz J.L.C., editor. Image Technology. Springer; Berlin/Heidelberg, Germany: 2012. pp. 385–404.
Cao M., Wang D. The Application of CCD Pixel Positionning Subdivision in the Reach of Laser Triangulation Measurement. Int. J. Multimed. Ubiquitous Eng. 2016;11:79–86. doi: 10.14257/ijmue.2016.11.1.08. DOI
Kienle P., Nallar E., Köhler M.H., Jakobi M., Koch A.W. Analysis of sub-pixel laser spot detection in laser triangulation systems; Proceedings of the SPIE 11056, Optical Measurement Systems for Industrial Inspection XI, 110563O; Munich, Germany. 24–27 June 2019.
Nan Z., Tao W., Zhao H. Automatic optical structure optimization method of the laser triangulation ranging system under the Scheimpflug rule. Opt. Express. 2022;30:18667–18683. doi: 10.1364/OE.458076. PubMed DOI
Zhang H., Wang S., Wang J. Automatic optimization design of laser triangulation ranging sensors using an improved genetic algorithm. Measurement. 2025;241:115739. doi: 10.1016/j.measurement.2024.115739. DOI
Yang H.W., Tao W., Zhang Z.Q., Zhao S.W., Yin X.Q., Zhao H. Reduction of the influence of laser beam directional dithering in a laser triangulation displacement probe. Sensors. 2017;17:1126. doi: 10.3390/s17051126. PubMed DOI PMC
Zhuojiang N., Wei T., Hui Z. Development of a small-size laser triangulation displacement sensor and temperature drift compensation method. Meas. Sci. Technol. 2021;32:095107. doi: 10.1088/1361-6501/abdef7. DOI
Li J., Tao W., Zhao H.A. Laser Triangulation Displacement Sensor Based on a Cylindrical Annular Reflector. Photonics. 2023;10:1139. doi: 10.3390/photonics10101139. DOI
Kienle P., Batarilo L., Akgül M., Köhler M.H., Wang K., Jakobi M., Koch A.W. Optical Setup for Error Compensation in a Laser Triangulation System. Sensors. 2020;20:4949. doi: 10.3390/s20174949. PubMed DOI PMC
Prause K., Thiele S., Herkommer A., Giessen H., Pinzer B. Concept for a highly miniaturized endoscopic point distance sensor; Proceedings of the SPIE 11056, Optical Measurement Systems for Industrial Inspection XI, 110560M; Munich, Germany. 24–27 June 2019.
Nakajima H., Ruther P., Mohr J., Nakashima T., Takashima K., Usami T. Micro-optical distance sensor fabricated by the LIGA process; Proceedings of the SPIE 3513, Microelectronic Structures and MEMS for Optical Processing IV; Santa Clara, CA, USA. 21–22 September 1998.