A binary system in the S cluster close to the supermassive black hole Sagittarius A

. 2024 Dec 17 ; 15 (1) : 10608. [epub] 20241217

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39690145
Odkazy

PubMed 39690145
PubMed Central PMC11652627
DOI 10.1038/s41467-024-54748-3
PII: 10.1038/s41467-024-54748-3
Knihovny.cz E-zdroje

High-velocity stars and peculiar G objects orbit the central supermassive black hole (SMBH) Sagittarius A* (Sgr A*). Together, the G objects and high-velocity stars constitute the S cluster. In contrast with theoretical predictions, no binary system near Sgr A* has been identified. Here, we report the detection of a spectroscopic binary system in the S cluster with the masses of the components of 2.80 ± 0.50 M⊙ and 0.73 ± 0.14 M⊙, assuming an edge-on configuration. Based on periodic changes in the radial velocity, we find an orbital period of 372±3 days for the two components. The binary system is stable against the disruption by Sgr A* due to the semi-major axis of the secondary being 1.59±0.01 AU, which is well below its tidal disruption radius of approximately 42.4 AU. The system, known as D9, shows similarities to the G objects. We estimate an age for D9 of 2 . 7 - 0.3 + 1.9 × 1 0 6 yr that is comparable to the timescale of the SMBH-induced von Zeipel-Lidov-Kozai cycle period of about 106 yr, causing the system to merge in the near future. Consequently, the population of G objects may consist of pre-merger binaries and post-merger products. The detection of D9 implies that binary systems in the S cluster have the potential to reside in the vicinity of the supermassive black hole Sgr A* for approximately 106 years.

Zobrazit více v PubMed

Schödel, R., Merritt, D. & Eckart, A. The nuclear star cluster of the Milky Way: proper motions and mass. Astron. Astrophys.502, 91–111 (2009).

Schödel, R., Najarro, F., Muzic, K. & Eckart, A. Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster. Accurate near infrared H, Ks, and L’ photometry and the near-infrared extinction-law toward the central parsec of the Galaxy. Astron. Astrophys.511, A18 (2010).

Ali, B. et al. Kinematic structure of the galactic center S cluster. Astrophys. J.896, 100 (2020).

Eckart, A. & Genzel, R. Observations of stellar proper motions near the Galactic centre. Nature383, 415–417 (1996).

Ghez, A. M., Klein, B. L., Morris, M. & Becklin, E. E. High proper-motion stars in the vicinity of sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. apj509, 678–686 (1998).

Morris, M. Massive star formation near the Galactic center and the fate of the stellar remnants. Astrophys. J.408, 496 (1993).

Habibi, M. et al. Spectroscopic detection of a cusp of late-type stars around the central black hole in the milky way. Astrophys. J.872, L15 (2019).

Lu, J. R. et al. Stellar populations in the central 0.5 pc of the galaxy. II. The initial mass function. Astrophys. J.764, 155 (2013).

Habibi, M. et al. Twelve years of spectroscopic monitoring in the galactic center: the closest look at S-stars near the black hole. Astrophys. J.847, 120 (2017).

Ghez, A. M. et al. The first measurement of spectral lines in a short-period star bound to the Galaxy’s central black hole: a paradox of youth. Astrophys. J.586, L127–L131 (2003).

Chu, D. S. et al. Evidence of a decreased binary fraction for massive stars within 20 milliparsecs of the supermassive black hole at the Galactic center. Astrophys. J.948, 94 (2023).

Offner, S. S. R. et al. Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M. (eds) The Origin and Evolution of Multiple Star Systems. (eds Inutsuka, S., Aikawa, Y., Muto, T., Tomida, K. & Tamura, M.) Protostars and Planets VII, 534 of Astronomical Society of the Pacific Conference Series, 275 (2023).

Michaely, E. & Naoz, S. New dynamical channel: wide binaries in the galactic center as a source of binary interactions. arXivhttps://arxiv.org/abs/2310.02558 (2023).

Gautam, A. K. et al. An estimate of the binary star fraction among young stars at the galactic center: possible evidence of a radial dependence. arXivhttps://arxiv.org/abs/2401.12555 (2024).

Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science337, 444 (2012). PubMed

Ciurlo, A. et al. A population of dust-enshrouded objects orbiting the Galactic black hole. Nature577, 337–340 (2020). PubMed

Peißker, F. et al. Candidate young stellar objects in the S-cluster: kinematic analysis of a subpopulation of the low-mass G objects close to Sgr A*. Astron. Astrophys.686, A235 (2024).

Eisenhauer, F. et al. Iye, M. & Moorwood, A. F. M. (eds) SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. (eds. Iye, M. & Moorwood, A. F. M.) Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, 4841 of Proc. SPIE, 1548–1561 (2003).

Bonnet, H. et al. First light of SINFONI at the VLT. Messenger117, 17–24 (2004).

Peißker, F. et al. Monitoring dusty sources in the vicinity of Sagittarius A*. Astron. Astrophys.634, A35 (2020b).

Davies, R. et al. The enhanced resolution imager and spectrograph for the VLT. Astron. Astrophys.674, A207 (2023).

Peißker, F., Eckart, A., Zajaček, M. & Britzen, S. Observation of S4716-a Star with a 4 yr orbit around Sgr A*. Astrophys. J.933, 49 (2022).

Event Horizon Telescope Collaboration. et al. First sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J.930, L12 (2022).

Gillessen, S. et al. An update on monitoring stellar orbits in the Galactic center. Astrophys. J.837, 30 (2017).

Matthews, K. & Soifer, B. T.McLean, I. S. (ed.) The Near Infrared Camera on the W. M. Keck Telescope. (ed. McLean, I. S.) Astronomy with Arrays, The Next Generation, 190 of Astrophysics and Space Science Library, 239 (1994).

Tran, H. D. et al. Peck, A. B., Seaman, R. L. & Benn, C. R. (eds) Data reduction pipelines for the Keck Observatory Archive. (eds Peck, A. B., Seaman, R. L. & Benn, C. R.) Observatory Operations: Strategies, Processes, and Systems VI, Vol. 9910 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 99102E (2016).

Eckart, A. et al. Near-infrared proper motions and spectroscopy of infrared excess sources at the galactic center. Astron. Astrophys.551, A18 (2013).

Witzel, G. et al. The post-periapsis evolution of galactic center source G1: the second case of a resolved tidal interaction with a supermassive black hole. Astrophys. J.847, 80 (2017).

Peißker, F. et al. The apparent tail of the galactic center object G2/DSO. Astrophys. J.923, 69 (2021c).

Scoville, N. & Burkert, A. The galactic center cloud g2, a young low-mass star with a stellar wind. Astrophys. J.768, 108 (2013).

Valencia-S, M. et al. Monitoring the dusty S-cluster object (DSO/G2) on its Orbit toward the Galactic center black hole. Astrophys. J.800, 125 (2015).

Robitaille, T. P. A modular set of synthetic spectral energy distributions for young stellar objects. Astron. Astrophys.600, A11 (2017).

Leggett, S. K. et al. L’ and M’ standard stars for the Mauna Kea observatories near-infrared system. Mon. Not. R. Astron. Soc.345, 144–152 (2003).

Eckart, A., Genzel, R., Ott, T. & Schödel, R. Stellar orbits near sagittarius A*. Mon. Not. R. Astron. Soc.331, 917–934 (2002).

Trifonov, T. The Exo-Striker: transit and radial velocity interactive fitting tool for orbital analysis and N-body simulations. Astrophysics Source Code Library, https://ui.adsabs.harvard.edu/abs/2019ascl.soft06004T/abstract (2019).

Bally, J. & Zinnecker, H. The birth of high-mass stars: accretion and/or mergers? Astron. J.129, 2281–2293 (2005).

Baines, D., Oudmaijer, R. D., Porter, J. M. & Pozzo, M. On the binarity of Herbig Ae/Be stars. Mon. Not. R. Astron. Soc.367, 737–753 (2006).

Tanaka, K. E. I., Tan, J. C. & Zhang, Y. Outflow-confined HII regions. I. First signposts of massive star formation. Astrophys. J.818, 52 (2016).

Tambovtseva, L. V., Grinin, V. P. & Weigelt, G. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars. Astron. Astrophys.590, A97 (2016).

Fateeva, A. M., Bisikalo, D. V., Kaygorodov, P. V. & Sytov, A. Y. Gaseous flows in the inner part of the circumbinary disk of the T Tauri star. Astrophys. Space Sci.335, 125–129 (2011).

Muzerolle, J., Hartmann, L. & Calvet, N. A brgamma probe of disk accretion in T Tauri stars and embedded young stellar objects. Astron. J.116, 2965–2974 (1998).

Grant, S. L., Espaillat, C. C., Brittain, S., Scott-Joseph, C. & Calvet, N. Tracing accretion onto herbig Ae/Be stars using the Brγ line. Astrophys. J.926, 229 (2022).

Fiorellino, E., Park, S., Kóspál, Á. & Ábrahám, P. The accretion process in the DQ tau binary system. Astrophys. J.928, 81 (2022).

Friedjung, M., Mikołajewska, J., Zajczyk, A. & Eriksson, M. UV emission line shifts of symbiotic binaries. Astron. Astrophys.512, A80 (2010).

Horne, K. & Marsh, T. R. Emission line formation in accretion discs. Mon. Not. R. Astron. Soc.218, 761–773 (1986).

Kraus, S. et al. Gas distribution, kinematics, and excitation structure in the disks around the classical be stars β canis minoris and ζ Tauri. Astrophys. J.744, 19 (2012).

Kraus, S. et al. Tracing the young massive high-eccentricity binary system θ1^Orionis C through periastron passage. Astron. Astrophys.497, 195–207 (2009).

Frost, A. J. et al. HR 6819 is a binary system with no black hole. Revisiting the source with infrared interferometry and optical integral field spectroscopy. Astron. Astrophys.659, L3 (2022).

Garcia, P. J. V. et al. Pre-main-sequence binaries with tidally disrupted discs: the Brγ in HD 104237. Mon. Not. R. Astron. Soc.430, 1839–1853 (2013).

Hartmann, L., Calvet, N., Gullbring, E. & D’Alessio, P. Accretion and the evolution of T Tauri disks. Astrophys. J.495, 385–400 (1998).

Grinin, V. P., Rostopchina, A. N., Barsunova, O. Y. & Demidova, T. V. Mechanism for cyclical activity of the Herbig Ae star BF Ori. Astrophysics53, 367–372 (2010).

Wheelwright, H. E., Oudmaijer, R. D. & Goodwin, S. P. The mass ratio and formation mechanisms of Herbig Ae/Be star binary systems. Mon. Not. R. Astron. Soc.401, 1199–1218 (2010).

Lützgendorf, N., Helm, Evd, Pelupessy, F. I. & Portegies Zwart, S. Stellar winds near massive black holes - the case of the S-stars. Mon. Not. R. Astron. Soc.456, 3645–3654 (2016).

Hollenbach, D., Johnstone, D., Lizano, S. & Shu, F. Photoevaporation of disks around massive stars and application to ultracompact H II regions. Astrophys. J.428, 654 (1994).

Johnstone, D., Hollenbach, D. & Bally, J. Photoevaporation of disks and clumps by nearby massive stars: application to disk destruction in the orion nebula. Astrophys. J.499, 758–776 (1998).

Messina, S. Evidence from stellar rotation for early disc dispersal owing to close companions. Astron. Astrophys.627, A97 (2019).

Alves, F. O. et al. Gas flow and accretion via spiral streamers and circumstellar disks in a young binary protostar. Science366, 90–93 (2019). PubMed

Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste stellar evolution code. Mon. Not. R. Astron. Soc.427, 127–145 (2012).

Fragione, G. & Gualandris, A. Tidal breakup of triple stars in the Galactic centre. Mon. Not. R. Astron. Soc.475, 4986–4993 (2018).

Bonnell, I. A. & Rice, W. K. M. Star formation around supermassive black holes. Science321, 1060 (2008). PubMed

Jalali, B. et al. Star formation in the vicinity of nuclear black holes: young stellar objects close to Sgr A*. Mon. Not. R. Astron. Soc.444, 1205–1220 (2014).

Zajaček, M. et al. Nature of the Galactic centre NIR-excess sources. I. What can we learn from the continuum observations of the DSO/G2 source? Astron. Astrophys.602, A121 (2017).

Hills, J. G. Hyper-velocity and tidal stars from binaries disrupted by a massive Galactic black hole. Nature331, 687–689 (1988).

Yu, Q. & Tremaine, S. Ejection of hypervelocity stars by the (binary) black hole in the Galactic center. Astrophys. J.599, 1129–1138 (2003).

Zajaček, M., Karas, V. & Eckart, A. Dust-enshrouded star near supermassive black hole: predictions for high-eccentricity passages near low-luminosity galactic nuclei. Astron. Astrophys.565, A17 (2014).

Armitage, P. J., Clarke, C. J. & Palla, F. Dispersion in the lifetime and accretion rate of T Tauri discs. Mon. Not. R. Astron. Soc.342, 1139–1146 (2003).

Alexander, R. The dispersal of protoplanetary disks around binary stars. Astrophys. J.757, L29 (2012).

Rose, S. C. et al. On socially distant neighbors: using binaries to constrain the density of objects in the galactic center. Astrophys. J.904, 113 (2020).

von Zeipel, H. Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astron. Nachr.183, 345 (1910).

Lidov, M. L. The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. Planet. Space Sci.9, 719–759 (1962).

Kozai, Y. Secular perturbations of asteroids with high inclination and eccentricity. Astron. J.67, 591–598 (1962).

Hopman, C. & Alexander, T. Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources. Astrophys. J.645, 1152–1163 (2006).

Gallego-Cano, E. et al. The distribution of stars around the Milky Way’s central black hole. I. Deep star counts. Astron. Astrophys.609, A26 (2018).

Stephan, A. P. et al. Merging binaries in the Galactic Center: the eccentric Kozai-Lidov mechanism with stellar evolution. Mon. Not. R. Astron. Soc.460, 3494–3504 (2016).

Soker, N. & Tylenda, R. Main-sequence stellar eruption model for V838 monocerotis. Astrophys. J.582, L105–L108 (2003).

Alexander, T. & Pfuhl, O. Constraining the dark cusp in the galactic center by long-period binaries. Astrophys. J.780, 148 (2014).

Ciurlo, A. et al. The swansong of the galactic center source X7: an extreme example of tidal evolution near the supermassive black hole. Astrophys. J.944, 136 (2023).

Stephan, A. P. et al. The fate of binaries in the Galactic center: the mundane and the exotic. Astrophys. J.878, 58 (2019).

Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J.192, 3 (2011).

Ott, T., Eckart, A. & Genzel, R. Variable and embedded stars in the Galactic center. Astrophys. J.523, 248–264 (1999).

DePoy, D. L. et al. The nature of the variable galactic center source IRS 16SW. Astrophys. J.617, 1127–1130 (2004).

Martins, F. et al. GCIRS 16SW: a massive eclipsing binary in the Galactic center. Astrophys. J.649, L103–L106 (2006).

Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J.243, 10 (2019).

Vioque, M., Oudmaijer, R. D., Baines, D., Mendigutía, I. & Pérez-Martínez, R. Gaia DR2 study of Herbig Ae/Be stars. Astron. Astrophys.620, A128 (2018).

McKee, C. F. & Ostriker, E. C. Theory of star formation. Annu. Rev. Astron. Astrophys.45, 565–687 (2007).

Wichittanakom, C. et al. The accretion rates and mechanisms of Herbig Ae/Be stars. Mon. Not. R. Astron. Soc.493, 234–249 (2020).

Gaia Collaboration. et al. The Gaia mission. Astron. Astrophys.595, A1 (2016).

Gaia Collaboration. et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys.616, A1 (2018).

Schödel, R. et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature419, 694–696 (2002). PubMed

Do, T. et al. Relativistic redshift of the star S0-2 orbiting the Galactic Center supermassive black hole. Science365, 664–668 (2019). PubMed

Parsa, M. et al. Investigating the relativistic motion of the stars near the supermassive black hole in the galactic center. Astrophys. J.845, 22 (2017).

Liu, D. C. & Nocedal, J. On the limited memory bfgs method for large scale optimization. Math. Program.45, 503–528 (1989).

Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.23, 550–560 (1997).

Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pac.125, 306 (2013).

Sabha, N. et al. The S-star cluster at the center of the Milky Way. On the nature of diffuse NIR emission in the inner tenth of a parsec. Astron. Astrophys.545, A70 (2012).

Peißker, F. et al. New bow-shock source with bipolar morphology in the vicinity of Sgr A*. Astron. Astrophys.624, A97 (2019).

Freudling, W. et al. Automated data reduction workflows for astronomy. The ESO Reflex environment. Astron. Astrophys.559, A96 (2013).

Peißker, F. et al. X3: a high-mass young stellar object close to the supermassive black hole Sgr A*. Astrophys. J.944, 231 (2023b).

Peißker, F. et al. First observed interaction of the circumstellar envelope of an S-star with the environment of Sgr A*. Astrophys. J.909, 62 (2021a).

Shahzamanian, B. et al. Polarized near-infrared light of the dusty S-cluster object (DSO/G2) at the galactic center. Astron. Astrophys.593, A131 (2016).

Najarro, F. et al. Quantitative spectroscopy of the HeI cluster in the galactic center. Astron. Astrophys.325, 700–708 (1997).

Peißker, F., Eckart, A., Sabha, N. B., Zajaček, M. & Bhat, H. Near- and mid-infrared observations in the inner tenth of a parsec of the galactic center detection of proper motion of a filament very close to Sgr A*. Astrophys. J.897, 28 (2020c).

Ciurlo, A. et al. Upper limit on brackett-γ emission from the immediate accretion flow onto the galactic black hole. Astrophys. J.910, 143 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...