Efficient Degradation of Recalcitrant Pharmaceuticals in Greywater Using Treatment of MBR and Immobilized TiO2 Porous Layers

. 2024 Dec 13 ; 4 (12) : 5587-5597. [epub] 20241129

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39698549

Traditional wastewater treatment often fails to remove pharmaceuticals, necessitating advanced solutions, such as TiO2 photocatalysis, for post-treatment. However, conventionally applied powder TiO2 can be cumbersome to separate from treated water. To solve this issue, this study immobilized three TiO2 photocatalysts (Anatase 16, Anatase 5, and P25) into porous layers and evaluated their efficacy for the degradation of three pharmaceuticals (naproxen, NPX; sulfamethoxazole, SMX; metformin, MTF) in standard solutions and greywater pretreated in a membrane bioreactor (MBR). In standard solutions, photocatalysis tests revealed a high degradation efficacy (NPX 100%, SMX 76-95%, MTF 57-75%) and challenged the belief that OH• is the predominant reactive oxygen species (ROS). The primary ROS were 1O2 for NPX and OH• for SMX and MTF. The raw greywater (NPX, SMX, MTF - 0.5 mg·L-1) treatment in MBR removed only 17-22% of the pharmaceuticals, highlighting the need for post-treatment. Using this pretreated greywater, P25 layers excelled for NPX (78 ± 5%) and SMX (73 ± 4%) but were less effective for MTF (40 ± 16%) compared to Anatase 16 (60 ± 10%). Moreover, the effluent toxicity (Aliivibrio fischeri) was reduced, and the degradation products were identified. Overall, TiO2 layers are a high-potential method for removing pharmaceuticals from MBR-treated greywater.

Zobrazit více v PubMed

Tsoumachidou S.; Velegraki T.; Antoniadis A.; Poulios I. Greywater as a Sustainable Water Source: A Photocatalytic Treatment Technology under Artificial and Solar Illumination. J. Environ. Manage. 2017, 195, 232–241. 10.1016/j.jenvman.2016.08.025. PubMed DOI

Park H.-D.; Chang I.-S.; Lee K.-J.. Principles of Membrane Bioreactors for Wastewater Treatment; CRC Press: Boca Raton, FL, 2015.

Gómez M.; De La Rua A.; Garralón G.; Plaza F.; Hontoria E.; Gómez M. A. Urban Wastewater Disinfection by Filtration Technologies. Desalination 2006, 190, 16–28. 10.1016/j.desal.2005.07.014. DOI

Del Vecchio P.; Haro N. K.; Souza F. S.; Marcílio N. R.; Féris L. A. Ampicillin Removal by Adsorption onto Activated Carbon: Kinetics, Equilibrium, and Thermodynamics. Water Sci. Technol. 2019, 79 (10), 2013–2021. 10.2166/wst.2019.205. PubMed DOI

Xiang Q.; Fukahori S.; Yamashita N.; Tanaka H.; Fujiwara T. Removal of Crotamiton from Reverse Osmosis Concentrate by a TiO2/Zeolite Composite Sheet. Appl. Sci. 2017, 7 (8), 778.10.3390/app7080778. DOI

Patel S.; Majumder S. K.; Das P.; Ghosh P. Ozone Microbubble-Aided Intensification of Degradation of Naproxen in a Plant Prototype. J. Environ. Chem. Eng. 2019, 7 (3), 10310210.1016/j.jece.2019.103102. DOI

Ojobe B.; Zouzelka R.; Satkova B.; Vagnerova M.; Nemeskalova A.; Kuchar M.; Bartacek J.; Rathousky J. Photocatalytic Removal of Pharmaceuticals from Greywater. Catalysts 2021, 11 (9), 1125.10.3390/catal11091125. DOI

Porcar-Santos O.; Cruz-Alcalde A.; López-Vinent N.; Zanganas D.; Sans C. Photocatalytic Degradation of Sulfamethoxazole Using TiO2 in Simulated Seawater: Evidence for Direct Formation of Reactive Halogen Species and Halogenated By-Products. Sci. Total Environ. 2020, 736, 13960510.1016/j.scitotenv.2020.139605. PubMed DOI

Chinnaiyan P.; Thampi S. G.; Kumar M.; Balachandran M. Photocatalytic Degradation of Metformin and Amoxicillin in Synthetic Hospital Wastewater: Effect of Classical Parameters. Int. J. Environ. Sci. Technol. 2019, 16 (10), 5463–5474. 10.1007/s13762-018-1935-0. DOI

Yuan D.; Zhang C.; Tang S.; Sun M.; Zhang Y.; Rao Y.; Wang Z.; Ke J. Fe3+-Sulfite Complexation Enhanced Persulfate Fenton-like Process for Antibiotic Degradation Based on Response Surface Optimization. Sci. Total Environ. 2020, 727, 13877310.1016/j.scitotenv.2020.138773. PubMed DOI

da Silva C. G.; Faria J. L. Photochemical and Photocatalytic Degradation of an Azo Dye in Aqueous Solution by UV Irradiation. J. Photochem. Photobiol. A 2003, 155 (1–3), 133–143. 10.1016/S1010-6030(02)00374-X. DOI

Zouzelka R.; Remzova M.; Brabec L.; Rathousky J. Photocatalytic Performance of Porous TiO2 Layers Prepared by Quantitative Electrophoretic Deposition from Organic Solvents. Appl. Catal., B 2018, 227, 70–78. 10.1016/j.apcatb.2018.01.035. DOI

Zhou M.; Zhang X.; Quan Y.; Tian Y.; Chen J.; Li L. Visible Light-Induced Photocatalytic and Antibacterial Adhesion Properties of Superhydrophilic TiO2 Nanoparticles. Sci. Rep. 2024, 14 (1), 794010.1038/s41598-024-58660-0. PubMed DOI PMC

Medvids A.; Onufrijevs P.; Kaupužs J.; Eglitis R.; Padgurskas J.; Zunda A.; Mimura H.; Skadins I.; Varnagiris S. Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical, Photocatalytic, and Antibacterial Properties. Opt. Laser Technol. 2021, 138, 10689810.1016/j.optlastec.2020.106898. DOI

Hanus M. J.; Harris A. T. Nanotechnology Innovations for the Construction Industry. Prog. Mater. Sci. 2013, 58 (7), 1056–1102. 10.1016/j.pmatsci.2013.04.001. DOI

Rodriguez P.; Meille V.; Pallier S.; Al Sawah M. A. Deposition and Characterisation of TiO2 Coatings on Various Supports for Structured (Photo)Catalytic Reactors. Appl. Catal., A 2009, 360 (2), 154–162. 10.1016/j.apcata.2009.03.013. DOI

Heshmatpour F.; Zarrin S. A Probe into the Effect of Fixing the Titanium Dioxide by a Conductive Polymer and Ceramic on the Photocatalytic Activity for Degradation of Organic Pollutants. J. Photochem. Photobiol. A 2017, 346, 431–443. 10.1016/j.jphotochem.2017.06.017. DOI

Uddin M. T.; Nicolas Y.; Olivier C.; Toupance T.; Müller M. M.; Kleebe H. J.; Rachut K.; Ziegler J.; Klein A.; Jaegermann W. Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. J. Phys. Chem. C 2013, 117 (42), 22098–22110. 10.1021/jp407539c. DOI

Behnajady M. A.; Modirshahla N.; Shokri M.; Elham H.; Zeininezhad A. The Effect of Particle Size and Crystal Structure of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Environ. Sci. Health, Part A 2008, 43 (5), 460–467. 10.1080/10934520701796267. PubMed DOI

Jung S. C.; Bang H. J.; Lee H.; Kim H.; Ha H. H.; Yu Y. H.; Park Y. K. Degradation Behaviors of Naproxen by a Hybrid TiO2 Photocatalyst System with Process Components. Sci. Total Environ. 2020, 708, 13521610.1016/j.scitotenv.2019.135216. PubMed DOI

Méndez-Arriaga F.; Gimenez J.; Esplugas S. Photolysis and TiO2 Photocatalytic Treatment of Naproxen: Degradation, Mineralization, Intermediates, and Toxicity. J. Adv. Oxid. Technol. 2008, 11 (3), 030210.1515/jaots-2008-0302. DOI

Arany E.; Szabó R. K.; Apáti L.; Alapi T.; Ilisz I.; Mazellier P.; Dombi A.; Gajda-Schrantz K. Degradation of Naproxen by UV, VUV Photolysis, and Their Combination. J. Hazard. Mater. 2013, 262, 151–157. 10.1016/j.jhazmat.2013.08.003. PubMed DOI

DellaGreca M.; Brigante M.; Isidori M.; Nardelli A.; Previtera L.; Rubino M.; Temussi F. Phototransformation and Ecotoxicity of the Drug Naproxen-Na. Environ. Chem. Lett. 2003, 1 (4), 237–241. 10.1007/s10311-003-0045-4. DOI

Hurum D. C.; Agrios A. G.; Gray K. A.; Rajh T.; Thurnauer M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107 (19), 4545–4549. 10.1021/jp0273934. DOI

Isari A. A.; Hayati F.; Kakavandi B.; Rostami M.; Motevassel M.; Dehghanifard E. N, Cu Co-Doped TiO2@functionalized SWCNT Photocatalyst Coupled with Ultrasound and Visible-Light: An Effective Sono-Photocatalysis Process for Pharmaceutical Wastewaters Treatment. Chem. Eng. J. 2020, 392, 12368510.1016/j.cej.2019.123685. DOI

Nawaz M.; Khan A. A.; Hussain A.; Jang J.; Jung H. Y.; Lee D. S. Reduced Graphene Oxide–TiO2/Sodium Alginate 3-Dimensional Structure Aerogel for Enhanced Photocatalytic Degradation of Ibuprofen and Sulfamethoxazole. Chemosphere 2020, 261, 12770210.1016/j.chemosphere.2020.127702. PubMed DOI

Prashanth V.; Priyanka K.; Remya N. Solar Photocatalytic Degradation of Metformin by TiO2 Synthesized Using Calotropis Gigantea Leaf Extract. Water Sci. Technol. 2021, 83 (5), 1072–1084. 10.2166/wst.2021.040. PubMed DOI

Kumar A.; Škoro N.; Gernjak W.; Puač N. Cold Atmospheric Plasma Technology for Removal of Organic Micropollutants from Wastewater – A Review. Eur. Phys. J. D 2021, 75 (11), 28310.1140/epjd/s10053-021-00283-5. DOI

Karimian S.; Moussavi G.; Fanaei F.; Mohammadi S.; Shekoohiyan S.; Giannakis S. Shedding Light on the Catalytic Synergies between Fe(II) and PMS in Vacuum UV (VUV/Fe/PMS) Photoreactors for Accelerated Elimination of Pharmaceuticals: The Case of Metformin. Chem. Eng. J. 2020, 400, 12589610.1016/j.cej.2020.125896. DOI

Lin W.; Zhang X.; Li P.; Tan Y.; Ren Y. Ultraviolet Photolysis of Metformin: Mechanisms of Environmental Factors, Identification of Intermediates, and Density Functional Theory Calculations. Environ. Sci. Pollut. Res. 2020, 27 (14), 17043–17053. 10.1007/s11356-020-08255-9. PubMed DOI

D’Arienzo M.; Carbajo J.; Bahamonde A.; Crippa M.; Polizzi S.; Scotti R.; Wahba L.; Morazzoni F. Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals: A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes. J. Am. Chem. Soc. 2011, 133 (44), 17652–17661. 10.1021/ja204838s. PubMed DOI

Zraunig A.; Estelrich M.; Gattringer H.; Kisser J.; Langergraber G.; Radtke M.; Rodriguez-Roda I.; Buttiglieri G. Long-Term Decentralized Greywater Treatment for Water Reuse Purposes in a Tourist Facility by Vertical Ecosystem. Ecol. Eng. 2019, 138, 138.10.1016/j.ecoleng.2019.07.003. DOI

Shkrob I. A.; Sauer M. C. Hole Scavenging and Photo-Stimulated Recombination of Electron-Hole Pairs in Aqueous TiO2 Nanoparticles. J. Phys. Chem. B 2004, 108 (33), 12497–12511. 10.1021/jp047736t. DOI

Pellegrino F.; Pellutiè L.; Sordello F.; Minero C.; Ortel E.; Hodoroaba V. D.; Maurino V. Influence of Agglomeration and Aggregation on the Photocatalytic Activity of TiO2 Nanoparticles. Appl. Catal., B 2017, 216, 80–87. 10.1016/j.apcatb.2017.05.046. DOI

Tisler S.; Zwiener C. Formation and Occurrence of Transformation Products of Metformin in Wastewater and Surface Water. Sci. Total Environ. 2018, 628–629, 1121–1129. 10.1016/j.scitotenv.2018.02.105. PubMed DOI

Arlos M. J.; Hatat-Fraile M. M.; Liang R.; Bragg L. M.; Zhou N. Y.; Andrews S. A.; Servos M. R. Photocatalytic Decomposition of Organic Micropollutants Using Immobilized TiO2 Having Different Isoelectric Points. Water Res. 2016, 101, 351–361. 10.1016/j.watres.2016.05.073. PubMed DOI

Romeiro A.; Azenha M. E.; Canle M.; Rodrigues V. H. N.; Da Silva J. P.; Burrows H. D. Titanium Dioxide Nanoparticle Photocatalysed Degradation of Ibuprofen and Naproxen in Water: Competing Hydroxyl Radical Attack and Oxidative Decarboxylation by Semiconductor Holes. ChemistrySelect 2018, 3 (39), 10915–10924. 10.1002/slct.201801953. DOI

Alatrache A.; Cortyl A.; Arnoux P.; Pons M. N.; Zahraa O. Sulfamethoxazole Removal from Polluted Water by Immobilized Photocatalysis. Toxicol. Environ. Chem. 2015, 97 (1), 32–42. 10.1080/02772248.2014.942308. DOI

Zhu S.; Liu Y.; Liu S.; Zeng G.; Jiang L.; Tan X.; Zhou L.; Zeng W.; Li T.; Yang C. Adsorption of Emerging Contaminant Metformin Using Graphene Oxide. Chemosphere 2017, 179, 20–28. 10.1016/j.chemosphere.2017.03.071. PubMed DOI

Méndez-Arriaga F.; Esplugas S.; Giménez J. Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs with TiO2 and Simulated Solar Irradiation. Water Res. 2008, 42 (3), 585–594. 10.1016/j.watres.2007.08.002. PubMed DOI

Luo J.; Zhang S.; Sun M.; Yang L.; Luo S.; Crittenden J. C. A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano 2019, 13 (9), 9811–9840. 10.1021/acsnano.9b03649. PubMed DOI

Abellán M.; Giménez J.; Esplugas S. Photocatalytic Degradation of Antibiotics: The Case of Sulfamethoxazole and Trimethoprim. Catal. Today 2009, 144 (1–2), 131–136. 10.1016/j.cattod.2009.01.051. DOI

Quintão F. J. O.; Freitas J. R. L.; de Fátima Machado C.; Aquino S. F.; de Queiroz Silva S.; de Cássia Franco Afonso R. J. Characterization of Metformin By-Products under Photolysis, Photocatalysis, Ozonation, and Chlorination by High-Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30 (21), 2360–2368. 10.1002/rcm.7724. PubMed DOI

Dianati R. A.; Mengelizadeh N.; Zazouli M. A.; Yazdani Cherati J.; Balarak D.; Ashrafi S. Photocatalytic Degradation of Bisphenol A by GO-TiO2 Nanocomposite under Ultraviolet Light: Synthesis, Effect of Parameters, and Mineralisation. Int. J. Environ. Anal. Chem. 2024, 104, 5065.10.1080/03067319.2022.2118055. DOI

Noroozi R.; Gholami M.; Farzadkia M.; Kalantary R. R. Synthesis of New Hybrid Composite Based on TiO2 for Photocatalytic Degradation of Sulfamethoxazole and Pharmaceutical Wastewater, Optimization, Performance, and Reaction Mechanism Studies. Environ. Sci. Pollut. Res. Int. 2022, 29 (37), 56403–56418. 10.1007/s11356-022-19375-9. PubMed DOI

Neamtu M.; Grandjean D.; Sienkiewicz A.; Le Faucheur S.; Slaveykova V.; Colmenares J. J. V.; Pulgarín C.; De Alencastro L. F. Degradation of Eight Relevant Micropollutants in Different Water Matrices by Neutral Photo-Fenton Process under UV300 and Simulated Solar Light Irradiation—A Comparative Study. Appl. Catal., B 2014, 158–159, 30–37. 10.1016/j.apcatb.2014.04.001. DOI

Kumar R.; Akbarinejad A.; Jasemizad T.; Fucina R.; Travas-Sejdic J.; Padhye L. P. The Removal of Metformin and Other Selected PPCPs from Water by Poly(3,4-Ethylenedioxythiophene) Photocatalyst. Sci. Total Environ. 2021, 751, 14230210.1016/j.scitotenv.2020.142302. PubMed DOI

Gmurek M.; Horn H.; Majewsky M. Phototransformation of Sulfamethoxazole under Simulated Sunlight: Transformation Products and Their Antibacterial Activity toward Vibrio Fischeri. Sci. Total Environ. 2015, 538, 58–63. 10.1016/j.scitotenv.2015.08.014. PubMed DOI

Abdel-Shafy H. I.; Mohamed-Mansour M. S. Issue of Pharmaceutical Compounds in Water and Wastewater: Sources, Impact, and Elimination. Egypt. J. Chem. 2013, 56 (5), 449–471. 10.21608/EJCHEM.2013.1123. DOI

Hernández-Leal L.; Temmink H.; Zeeman G.; Buisman C. J. N. Removal of Micropollutants from Aerobically Treated Grey Water via Ozone and Activated Carbon. Water Res. 2011, 45 (9), 2887–2896. 10.1016/j.watres.2011.03.009. PubMed DOI

Kadewa W. W.; Knops G.; Pidou M.; Jeffrey P.; Jefferson B.; Le Corre K. S. What Is the Impact of Personal Care Products Selection on Greywater Characteristics and Reuse?. Sci. Total Environ. 2020, 749, 14141310.1016/j.scitotenv.2020.141413. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...