Efficient Degradation of Recalcitrant Pharmaceuticals in Greywater Using Treatment of MBR and Immobilized TiO2 Porous Layers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39698549
PubMed Central
PMC11650637
DOI
10.1021/acsestwater.4c00618
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Traditional wastewater treatment often fails to remove pharmaceuticals, necessitating advanced solutions, such as TiO2 photocatalysis, for post-treatment. However, conventionally applied powder TiO2 can be cumbersome to separate from treated water. To solve this issue, this study immobilized three TiO2 photocatalysts (Anatase 16, Anatase 5, and P25) into porous layers and evaluated their efficacy for the degradation of three pharmaceuticals (naproxen, NPX; sulfamethoxazole, SMX; metformin, MTF) in standard solutions and greywater pretreated in a membrane bioreactor (MBR). In standard solutions, photocatalysis tests revealed a high degradation efficacy (NPX 100%, SMX 76-95%, MTF 57-75%) and challenged the belief that OH• is the predominant reactive oxygen species (ROS). The primary ROS were 1O2 for NPX and OH• for SMX and MTF. The raw greywater (NPX, SMX, MTF - 0.5 mg·L-1) treatment in MBR removed only 17-22% of the pharmaceuticals, highlighting the need for post-treatment. Using this pretreated greywater, P25 layers excelled for NPX (78 ± 5%) and SMX (73 ± 4%) but were less effective for MTF (40 ± 16%) compared to Anatase 16 (60 ± 10%). Moreover, the effluent toxicity (Aliivibrio fischeri) was reduced, and the degradation products were identified. Overall, TiO2 layers are a high-potential method for removing pharmaceuticals from MBR-treated greywater.
Zobrazit více v PubMed
Tsoumachidou S.; Velegraki T.; Antoniadis A.; Poulios I. Greywater as a Sustainable Water Source: A Photocatalytic Treatment Technology under Artificial and Solar Illumination. J. Environ. Manage. 2017, 195, 232–241. 10.1016/j.jenvman.2016.08.025. PubMed DOI
Park H.-D.; Chang I.-S.; Lee K.-J.. Principles of Membrane Bioreactors for Wastewater Treatment; CRC Press: Boca Raton, FL, 2015.
Gómez M.; De La Rua A.; Garralón G.; Plaza F.; Hontoria E.; Gómez M. A. Urban Wastewater Disinfection by Filtration Technologies. Desalination 2006, 190, 16–28. 10.1016/j.desal.2005.07.014. DOI
Del Vecchio P.; Haro N. K.; Souza F. S.; Marcílio N. R.; Féris L. A. Ampicillin Removal by Adsorption onto Activated Carbon: Kinetics, Equilibrium, and Thermodynamics. Water Sci. Technol. 2019, 79 (10), 2013–2021. 10.2166/wst.2019.205. PubMed DOI
Xiang Q.; Fukahori S.; Yamashita N.; Tanaka H.; Fujiwara T. Removal of Crotamiton from Reverse Osmosis Concentrate by a TiO2/Zeolite Composite Sheet. Appl. Sci. 2017, 7 (8), 778.10.3390/app7080778. DOI
Patel S.; Majumder S. K.; Das P.; Ghosh P. Ozone Microbubble-Aided Intensification of Degradation of Naproxen in a Plant Prototype. J. Environ. Chem. Eng. 2019, 7 (3), 10310210.1016/j.jece.2019.103102. DOI
Ojobe B.; Zouzelka R.; Satkova B.; Vagnerova M.; Nemeskalova A.; Kuchar M.; Bartacek J.; Rathousky J. Photocatalytic Removal of Pharmaceuticals from Greywater. Catalysts 2021, 11 (9), 1125.10.3390/catal11091125. DOI
Porcar-Santos O.; Cruz-Alcalde A.; López-Vinent N.; Zanganas D.; Sans C. Photocatalytic Degradation of Sulfamethoxazole Using TiO2 in Simulated Seawater: Evidence for Direct Formation of Reactive Halogen Species and Halogenated By-Products. Sci. Total Environ. 2020, 736, 13960510.1016/j.scitotenv.2020.139605. PubMed DOI
Chinnaiyan P.; Thampi S. G.; Kumar M.; Balachandran M. Photocatalytic Degradation of Metformin and Amoxicillin in Synthetic Hospital Wastewater: Effect of Classical Parameters. Int. J. Environ. Sci. Technol. 2019, 16 (10), 5463–5474. 10.1007/s13762-018-1935-0. DOI
Yuan D.; Zhang C.; Tang S.; Sun M.; Zhang Y.; Rao Y.; Wang Z.; Ke J. Fe3+-Sulfite Complexation Enhanced Persulfate Fenton-like Process for Antibiotic Degradation Based on Response Surface Optimization. Sci. Total Environ. 2020, 727, 13877310.1016/j.scitotenv.2020.138773. PubMed DOI
da Silva C. G.; Faria J. L. Photochemical and Photocatalytic Degradation of an Azo Dye in Aqueous Solution by UV Irradiation. J. Photochem. Photobiol. A 2003, 155 (1–3), 133–143. 10.1016/S1010-6030(02)00374-X. DOI
Zouzelka R.; Remzova M.; Brabec L.; Rathousky J. Photocatalytic Performance of Porous TiO2 Layers Prepared by Quantitative Electrophoretic Deposition from Organic Solvents. Appl. Catal., B 2018, 227, 70–78. 10.1016/j.apcatb.2018.01.035. DOI
Zhou M.; Zhang X.; Quan Y.; Tian Y.; Chen J.; Li L. Visible Light-Induced Photocatalytic and Antibacterial Adhesion Properties of Superhydrophilic TiO2 Nanoparticles. Sci. Rep. 2024, 14 (1), 794010.1038/s41598-024-58660-0. PubMed DOI PMC
Medvids A.; Onufrijevs P.; Kaupužs J.; Eglitis R.; Padgurskas J.; Zunda A.; Mimura H.; Skadins I.; Varnagiris S. Anatase or Rutile TiO2 Nanolayer Formation on Ti Substrates by Laser Radiation: Mechanical, Photocatalytic, and Antibacterial Properties. Opt. Laser Technol. 2021, 138, 10689810.1016/j.optlastec.2020.106898. DOI
Hanus M. J.; Harris A. T. Nanotechnology Innovations for the Construction Industry. Prog. Mater. Sci. 2013, 58 (7), 1056–1102. 10.1016/j.pmatsci.2013.04.001. DOI
Rodriguez P.; Meille V.; Pallier S.; Al Sawah M. A. Deposition and Characterisation of TiO2 Coatings on Various Supports for Structured (Photo)Catalytic Reactors. Appl. Catal., A 2009, 360 (2), 154–162. 10.1016/j.apcata.2009.03.013. DOI
Heshmatpour F.; Zarrin S. A Probe into the Effect of Fixing the Titanium Dioxide by a Conductive Polymer and Ceramic on the Photocatalytic Activity for Degradation of Organic Pollutants. J. Photochem. Photobiol. A 2017, 346, 431–443. 10.1016/j.jphotochem.2017.06.017. DOI
Uddin M. T.; Nicolas Y.; Olivier C.; Toupance T.; Müller M. M.; Kleebe H. J.; Rachut K.; Ziegler J.; Klein A.; Jaegermann W. Preparation of RuO2/TiO2 Mesoporous Heterostructures and Rationalization of Their Enhanced Photocatalytic Properties by Band Alignment Investigations. J. Phys. Chem. C 2013, 117 (42), 22098–22110. 10.1021/jp407539c. DOI
Behnajady M. A.; Modirshahla N.; Shokri M.; Elham H.; Zeininezhad A. The Effect of Particle Size and Crystal Structure of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Environ. Sci. Health, Part A 2008, 43 (5), 460–467. 10.1080/10934520701796267. PubMed DOI
Jung S. C.; Bang H. J.; Lee H.; Kim H.; Ha H. H.; Yu Y. H.; Park Y. K. Degradation Behaviors of Naproxen by a Hybrid TiO2 Photocatalyst System with Process Components. Sci. Total Environ. 2020, 708, 13521610.1016/j.scitotenv.2019.135216. PubMed DOI
Méndez-Arriaga F.; Gimenez J.; Esplugas S. Photolysis and TiO2 Photocatalytic Treatment of Naproxen: Degradation, Mineralization, Intermediates, and Toxicity. J. Adv. Oxid. Technol. 2008, 11 (3), 030210.1515/jaots-2008-0302. DOI
Arany E.; Szabó R. K.; Apáti L.; Alapi T.; Ilisz I.; Mazellier P.; Dombi A.; Gajda-Schrantz K. Degradation of Naproxen by UV, VUV Photolysis, and Their Combination. J. Hazard. Mater. 2013, 262, 151–157. 10.1016/j.jhazmat.2013.08.003. PubMed DOI
DellaGreca M.; Brigante M.; Isidori M.; Nardelli A.; Previtera L.; Rubino M.; Temussi F. Phototransformation and Ecotoxicity of the Drug Naproxen-Na. Environ. Chem. Lett. 2003, 1 (4), 237–241. 10.1007/s10311-003-0045-4. DOI
Hurum D. C.; Agrios A. G.; Gray K. A.; Rajh T.; Thurnauer M. C. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR. J. Phys. Chem. B 2003, 107 (19), 4545–4549. 10.1021/jp0273934. DOI
Isari A. A.; Hayati F.; Kakavandi B.; Rostami M.; Motevassel M.; Dehghanifard E. N, Cu Co-Doped TiO2@functionalized SWCNT Photocatalyst Coupled with Ultrasound and Visible-Light: An Effective Sono-Photocatalysis Process for Pharmaceutical Wastewaters Treatment. Chem. Eng. J. 2020, 392, 12368510.1016/j.cej.2019.123685. DOI
Nawaz M.; Khan A. A.; Hussain A.; Jang J.; Jung H. Y.; Lee D. S. Reduced Graphene Oxide–TiO2/Sodium Alginate 3-Dimensional Structure Aerogel for Enhanced Photocatalytic Degradation of Ibuprofen and Sulfamethoxazole. Chemosphere 2020, 261, 12770210.1016/j.chemosphere.2020.127702. PubMed DOI
Prashanth V.; Priyanka K.; Remya N. Solar Photocatalytic Degradation of Metformin by TiO2 Synthesized Using Calotropis Gigantea Leaf Extract. Water Sci. Technol. 2021, 83 (5), 1072–1084. 10.2166/wst.2021.040. PubMed DOI
Kumar A.; Škoro N.; Gernjak W.; Puač N. Cold Atmospheric Plasma Technology for Removal of Organic Micropollutants from Wastewater – A Review. Eur. Phys. J. D 2021, 75 (11), 28310.1140/epjd/s10053-021-00283-5. DOI
Karimian S.; Moussavi G.; Fanaei F.; Mohammadi S.; Shekoohiyan S.; Giannakis S. Shedding Light on the Catalytic Synergies between Fe(II) and PMS in Vacuum UV (VUV/Fe/PMS) Photoreactors for Accelerated Elimination of Pharmaceuticals: The Case of Metformin. Chem. Eng. J. 2020, 400, 12589610.1016/j.cej.2020.125896. DOI
Lin W.; Zhang X.; Li P.; Tan Y.; Ren Y. Ultraviolet Photolysis of Metformin: Mechanisms of Environmental Factors, Identification of Intermediates, and Density Functional Theory Calculations. Environ. Sci. Pollut. Res. 2020, 27 (14), 17043–17053. 10.1007/s11356-020-08255-9. PubMed DOI
D’Arienzo M.; Carbajo J.; Bahamonde A.; Crippa M.; Polizzi S.; Scotti R.; Wahba L.; Morazzoni F. Photogenerated Defects in Shape-Controlled TiO2 Anatase Nanocrystals: A Probe to Evaluate the Role of Crystal Facets in Photocatalytic Processes. J. Am. Chem. Soc. 2011, 133 (44), 17652–17661. 10.1021/ja204838s. PubMed DOI
Zraunig A.; Estelrich M.; Gattringer H.; Kisser J.; Langergraber G.; Radtke M.; Rodriguez-Roda I.; Buttiglieri G. Long-Term Decentralized Greywater Treatment for Water Reuse Purposes in a Tourist Facility by Vertical Ecosystem. Ecol. Eng. 2019, 138, 138.10.1016/j.ecoleng.2019.07.003. DOI
Shkrob I. A.; Sauer M. C. Hole Scavenging and Photo-Stimulated Recombination of Electron-Hole Pairs in Aqueous TiO2 Nanoparticles. J. Phys. Chem. B 2004, 108 (33), 12497–12511. 10.1021/jp047736t. DOI
Pellegrino F.; Pellutiè L.; Sordello F.; Minero C.; Ortel E.; Hodoroaba V. D.; Maurino V. Influence of Agglomeration and Aggregation on the Photocatalytic Activity of TiO2 Nanoparticles. Appl. Catal., B 2017, 216, 80–87. 10.1016/j.apcatb.2017.05.046. DOI
Tisler S.; Zwiener C. Formation and Occurrence of Transformation Products of Metformin in Wastewater and Surface Water. Sci. Total Environ. 2018, 628–629, 1121–1129. 10.1016/j.scitotenv.2018.02.105. PubMed DOI
Arlos M. J.; Hatat-Fraile M. M.; Liang R.; Bragg L. M.; Zhou N. Y.; Andrews S. A.; Servos M. R. Photocatalytic Decomposition of Organic Micropollutants Using Immobilized TiO2 Having Different Isoelectric Points. Water Res. 2016, 101, 351–361. 10.1016/j.watres.2016.05.073. PubMed DOI
Romeiro A.; Azenha M. E.; Canle M.; Rodrigues V. H. N.; Da Silva J. P.; Burrows H. D. Titanium Dioxide Nanoparticle Photocatalysed Degradation of Ibuprofen and Naproxen in Water: Competing Hydroxyl Radical Attack and Oxidative Decarboxylation by Semiconductor Holes. ChemistrySelect 2018, 3 (39), 10915–10924. 10.1002/slct.201801953. DOI
Alatrache A.; Cortyl A.; Arnoux P.; Pons M. N.; Zahraa O. Sulfamethoxazole Removal from Polluted Water by Immobilized Photocatalysis. Toxicol. Environ. Chem. 2015, 97 (1), 32–42. 10.1080/02772248.2014.942308. DOI
Zhu S.; Liu Y.; Liu S.; Zeng G.; Jiang L.; Tan X.; Zhou L.; Zeng W.; Li T.; Yang C. Adsorption of Emerging Contaminant Metformin Using Graphene Oxide. Chemosphere 2017, 179, 20–28. 10.1016/j.chemosphere.2017.03.071. PubMed DOI
Méndez-Arriaga F.; Esplugas S.; Giménez J. Photocatalytic Degradation of Non-Steroidal Anti-Inflammatory Drugs with TiO2 and Simulated Solar Irradiation. Water Res. 2008, 42 (3), 585–594. 10.1016/j.watres.2007.08.002. PubMed DOI
Luo J.; Zhang S.; Sun M.; Yang L.; Luo S.; Crittenden J. C. A Critical Review on Energy Conversion and Environmental Remediation of Photocatalysts with Remodeling Crystal Lattice, Surface, and Interface. ACS Nano 2019, 13 (9), 9811–9840. 10.1021/acsnano.9b03649. PubMed DOI
Abellán M.; Giménez J.; Esplugas S. Photocatalytic Degradation of Antibiotics: The Case of Sulfamethoxazole and Trimethoprim. Catal. Today 2009, 144 (1–2), 131–136. 10.1016/j.cattod.2009.01.051. DOI
Quintão F. J. O.; Freitas J. R. L.; de Fátima Machado C.; Aquino S. F.; de Queiroz Silva S.; de Cássia Franco Afonso R. J. Characterization of Metformin By-Products under Photolysis, Photocatalysis, Ozonation, and Chlorination by High-Performance Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Rapid Commun. Mass Spectrom. 2016, 30 (21), 2360–2368. 10.1002/rcm.7724. PubMed DOI
Dianati R. A.; Mengelizadeh N.; Zazouli M. A.; Yazdani Cherati J.; Balarak D.; Ashrafi S. Photocatalytic Degradation of Bisphenol A by GO-TiO2 Nanocomposite under Ultraviolet Light: Synthesis, Effect of Parameters, and Mineralisation. Int. J. Environ. Anal. Chem. 2024, 104, 5065.10.1080/03067319.2022.2118055. DOI
Noroozi R.; Gholami M.; Farzadkia M.; Kalantary R. R. Synthesis of New Hybrid Composite Based on TiO2 for Photocatalytic Degradation of Sulfamethoxazole and Pharmaceutical Wastewater, Optimization, Performance, and Reaction Mechanism Studies. Environ. Sci. Pollut. Res. Int. 2022, 29 (37), 56403–56418. 10.1007/s11356-022-19375-9. PubMed DOI
Neamtu M.; Grandjean D.; Sienkiewicz A.; Le Faucheur S.; Slaveykova V.; Colmenares J. J. V.; Pulgarín C.; De Alencastro L. F. Degradation of Eight Relevant Micropollutants in Different Water Matrices by Neutral Photo-Fenton Process under UV300 and Simulated Solar Light Irradiation—A Comparative Study. Appl. Catal., B 2014, 158–159, 30–37. 10.1016/j.apcatb.2014.04.001. DOI
Kumar R.; Akbarinejad A.; Jasemizad T.; Fucina R.; Travas-Sejdic J.; Padhye L. P. The Removal of Metformin and Other Selected PPCPs from Water by Poly(3,4-Ethylenedioxythiophene) Photocatalyst. Sci. Total Environ. 2021, 751, 14230210.1016/j.scitotenv.2020.142302. PubMed DOI
Gmurek M.; Horn H.; Majewsky M. Phototransformation of Sulfamethoxazole under Simulated Sunlight: Transformation Products and Their Antibacterial Activity toward Vibrio Fischeri. Sci. Total Environ. 2015, 538, 58–63. 10.1016/j.scitotenv.2015.08.014. PubMed DOI
Abdel-Shafy H. I.; Mohamed-Mansour M. S. Issue of Pharmaceutical Compounds in Water and Wastewater: Sources, Impact, and Elimination. Egypt. J. Chem. 2013, 56 (5), 449–471. 10.21608/EJCHEM.2013.1123. DOI
Hernández-Leal L.; Temmink H.; Zeeman G.; Buisman C. J. N. Removal of Micropollutants from Aerobically Treated Grey Water via Ozone and Activated Carbon. Water Res. 2011, 45 (9), 2887–2896. 10.1016/j.watres.2011.03.009. PubMed DOI
Kadewa W. W.; Knops G.; Pidou M.; Jeffrey P.; Jefferson B.; Le Corre K. S. What Is the Impact of Personal Care Products Selection on Greywater Characteristics and Reuse?. Sci. Total Environ. 2020, 749, 14141310.1016/j.scitotenv.2020.141413. PubMed DOI