Design and development of spectrophotometric enzymatic cyanide assays

. 2025 Feb ; 417 (4) : 697-704. [epub] 20241220

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39702675

Grantová podpora
GA22-06785S Grantová Agentura České Republiky
Talking microbes - understanding microbial interac Ministerstvo Školství, Mládeže a Tělovýchovy
RVO61388971 Mikrobiologický Ústav, Akademie Věd České Republiky

Odkazy

PubMed 39702675
PubMed Central PMC11954721
DOI 10.1007/s00216-024-05703-0
PII: 10.1007/s00216-024-05703-0
Knihovny.cz E-zdroje

Determination of free cyanide (fCN) is required for various industrial, environmental, food, and clinical samples. Enzymatic methods are not widely used in this field despite their selectivity and mild conditions. Therefore, we present here a proof of concept for new spectrophotometric enzymatic assays of fCN. These are based on the hydrolysis of fCN affording the readily detectable NADH. fCN is hydrolyzed either in one step by cyanide dihydratase (CynD) or in two steps by cyanide hydratase (CynH) and formamidase (AmiF). An advantage of the latter route is the higher activity of CynH and AmiF compared to CynD. In both cases, the resulting formate is then transformed by an NAD-dependent formate dehydrogenase (FDH). The NADH thus formed is quantified colorimetrically using a known method based on a reduction of a tetrazolium salt (WST-8) with NADH. The developed assays of fCN are selective except for formic acid interference, proceed under mild conditions, and, moreover, fCN is detoxified during the reactions. The assays proceeded in a microtiter plate format. The limit of detection (LOD) and the limit of quantification (LOQ) were lower for the three-enzyme (CynH-AmiF-FDH) method (7.00 and 21.2 µmol/L, respectively) than for the two-enzyme (CynD-FDH) method (10.7 and 32.4 µmol/L, respectively). In conclusion, the new fCN assays presented in this work are selective, high-throughput, do not require harsh conditions, and use only small amounts of chemicals and enzymes.

Erratum v

PubMed

Zobrazit více v PubMed

Kuyucak N, Akcil A. Cyanide and removal options from effluents in gold mining and metallurgical processes. Miner Eng. 2013;50–51:13–29. 10.1016/j.mineng.2013.05.027.

Welman-Purchase MD, Castillo J, Gomez-Arias A, Matu A, Hansen RN. First insight into the natural biodegradation of cyanide in a gold tailings environment enriched in cyanide compounds. Sci Total Environ. 2024;906:167174. 10.1016/j.scitotenv.2023.167174. PubMed

Welman-Purchase MD, Hansen RN. Cyanide within gold mine waste of the free state goldfields: a geochemical modelling approach. Environ Pollut. 2023;318:120825. 10.1016/j.envpol.2022.120825. PubMed

Roldán MD, Olaya-Abril A, Sáez LP, Cabello P, Luque-Almagro VM, Moreno-Vivián C. Bioremediation of cyanide-containing wastes. The potential of systems and synthetic biology for cleaning up the toxic leftovers from mining. EMBO Rep. 2021;22:53720. 10.15252/embr.202153720. PubMed PMC

Fisher FB, Brown JS. Colorimetric determination of cyanide in stack gas and waste water. Anal Chem. 1952;24:1440–4. 10.1021/ac60069a014.

Basile LJ, Willson RC, Sewell BT, Benedik MJ. Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol. 2008;80:427–35. 10.1007/s00253-008-1559-2. PubMed

Appenteng MK, Krueger R, Johnson MC, Ingold H, Bell R, Thomas AL, Greenlief CM. Cyanogenic glycoside analysis in American elderberry. Molecules. 2021;26:1384. 10.3390/molecules26051384. PubMed PMC

Cyanide Test. Description. https://www.sigmaaldrich.com/CZ/en/product/mm/109701. Accessed 19 June 2024.

Byun Y, Rahman S, Hwang S, Park J, Go S, Kim J. Highly sensitive and straightforward methods for the detection of cyanide using profluorescent glutathionylcobalamin. Spectrochim Acta A. 2019;221:117151. 10.1016/j.saa.2019.117151. PubMed

Girgin A, Akbiyik H, Zaman BT, Cetin G, Bakirdere S. Colorimetric sensor based AgNPs for the detection of cyanide using UV-Vis spectrophotometry. ChemistrySelect. 2023;8:202301663. 10.1002/slct.202301663.

Li YR, Wang QR, Zhou XM, Wen CY, Yu JF, Han XG, Li XY, Yan ZF, Zeng JB. A convenient colorimetric method for sensitive and specific detection of cyanide using Ag@Au core-shell nanoparticles. Sensor Actuat B-Chem. 2016;228:366–72. 10.1016/j.snb.2016.01.022.

Christison TT, Rohrer JS. Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A. 2007;1155:31–9. 10.1016/j.chroma.2007.02.083. PubMed

Shin MC, Kwon YS, Kim JH, Hwang K, Seo JS. Validation of an analytical method for cyanide determination in blood, urine, lung, and skin tissues of rats using gas chromatography mass spectrometry (GC-MS). Anal Sci Technol. 2019;32:88–95. 10.5806/ast.2019.32.3.88.

Gattrell M, Cheng SC, Guena T, Macdougall B. Cyanide ion-selective electrode measurements in the presence of copper. J Electroanal Chem. 2001;508:97–104. 10.1016/s0022-0728(01)00513-7.

Turek M, Heiden W, Guo SR, Riesen A, Schubert J, Zander W, Krüger P, Keusgen M, Schöning MJ. Simultaneous detection of cyanide and heavy metals for environmental analysis by means of μISEs. Phys Status Solidi A. 2010;207:817–23. 10.1002/pssa.200983303.

Mak KKW, Yanase H, Renneberg R. Cyanide fishing and cyanide detection in coral reef fish using chemical tests and biosensors. Biosens Bioelectron. 2005;20:2581–93. 10.1016/j.bios.2004.09.015. PubMed

Keusgen M, Kloock JP, Knobbe DT, Junger M, Krest I, Goldbach M, Klein W, Schöning MJ. Direct determination of cyanides by potentiometric biosensors. Sensor Actuat B-Chem. 2004;103:380–5. 10.1016/j.snb.2004.04.067.

Turek M, Ketterer L, Classen M, Berndt HK, Elbers G, Krüger P, et al. Development and electrochemical investigations of an EIS-(electrolyte-insulator-semiconductor) based biosensor for cyanide detection. Sensors. 2007;7:1415–26. 10.3390/s7081415.

Ketterer L, Keusgen M. Amperometric sensor for cyanide utilizing cyanidase and formate dehydrogenase. Anal Chim Acta. 2010;673:54–9. 10.1016/j.aca.2010.04.058. PubMed

L-Lactic acid (L-Lactate) Assay Kit. Neogen | Megazyme. https://www.megazyme.com/l-lactic-acid-assay-kit. Accessed 19 June 2024.

Formic Acid Assay Kit. Neogen | Megazyme. https://www.megazyme.com/formic-acid-assay-kit. Accessed 19 June 2024.

Ishiyama M, Miyazono Y, Sasamoto K, Ohkura Y, Ueno K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta. 1997;44:1299–305. 10.1016/s0039-9140(97)00017-9. PubMed

Chamchoy K, Pakotiprapha D, Pumirat P, Leartsakulpanich U, Boonyuen U. Application of WST-8 based colorimetric NAD(P)H detection for quantitative dehydrogenase assays. BMC Biochem. 2019;20:4. 10.1186/s12858-019-0108-1. PubMed PMC

Martínková L, Kulik N, Rucká L, Kotik M, Křístková B, Šťastná K, Novotný P, Příhodová R, Bojarová P, Pátek M. Biotransformation of free cyanide to formic acid by a cyanide hydratase−formamidase cascade reaction. Proc Biochem. 2024;142:62–7. 10.1016/j.procbio.2024.04.009.

Crum MA, Park JM, Sewell BT, Benedik MJ. C-terminal hybrid mutant of Bacillus pumilus cyanide dihydratase dramatically enhances thermal stability and pH tolerance by reinforcing oligomerization. J Appl Microbiol. 2015;118:881–9. 10.1111/jam.12754. PubMed

Sedova A, Rucká L, Bojarová P, Glozlová M, Novotný P, Křístková B, Pátek M, Martínková L. Application potential of cyanide hydratase from Exidia glandulosa: free cyanide removal from simulated industrial effluents. Catalysts. 2021;11:1410. 10.3390/catal11111410.

Separation Science, Chromatographic Measurements, Part 5: Dolan J. Determining LOD and LOQ Based on the Calibration Curve. Feb 9, 2021. https://www.sepscience.com/hplc-solutions-126-chromatographic-measurements-part-5-determining-lod-and-loq-based-on-the-calibration-curve/. Accessed 20 June 2024.

Soriano-Maldonado P, Martínez-Gómez AI, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Las Heras-Vázquez FJ, Rodríguez-Vico F, Martínez-Rodríguez S. Biochemical and mutational studies of the Bacillus cereus CECT 5050T formamidase support the existence of a C-E-E-K tetrad in several members of the nitrilase superfamily. Appl Environ Microbiol. 2011;77:5761–9. 10.1128/aem.00312-11. PubMed PMC

Formate dehydrogenase (Candida boidinii). https://www.megazyme.com/formate-dehydrogenase-candida-boidinii. Accessed 22 August 2024.

Know your H2O? Get informed − what is cyanide? Water Research Center. https://www.knowyourh2o.com/indoor-6/cyanide#:~:text=. Accessed 30 May 2024.

Papadimitriou CA, Samaras P, Sakellaropoulos GP. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors. Bioresour Technol. 2009;100:31–7. 10.1016/j.biortech.2008.06.004. PubMed

Jarrah N, Mu’azu ND. Simultaneous electro-oxidation of phenol, CN-, S2- and NH4+ in synthetic wastewater using boron doped diamond anode. J Environ Chem Eng. 2016;4:2656–64. 10.1016/j.jece.2016.04.011.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...