Exploring the dynamics of reactive oxygen species from CaviPlasma and their disinfection and degradation potential - the case of cyanobacteria and cyanotoxins
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39702873
PubMed Central
PMC11732865
DOI
10.1007/s11356-024-35803-4
PII: 10.1007/s11356-024-35803-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cyanobacteria, Electric discharge, Hydrodynamic cavitation, Microcystins, Plasma-treated liquid, Radicals, Water treatment,
- MeSH
- dezinfekce * MeSH
- mikrocystiny MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku * MeSH
- sinice * MeSH
- Synechococcus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikrocystiny MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku * MeSH
We investigated the production of highly reactive oxygen species (ROS) in solutions undergoing treatment using CaviPlasma (CP) technology. This technology combines plasma discharge with hydrodynamic cavitation. This study focused on factors such as pH, conductivity, presence of salts and organic matter affecting ROS formation and their stability in solutions. Depending on the used matrix, CP produces 450-580 µg L-1 s-1 of hydrogen peroxide and 1.9 µg L-1 s-1 of hydroxyl radicals dissolved in liquid. Using cyanobacteria and cyanotoxins as example, we proved that CP technology is a highly efficient method for destroying microorganisms and persistent toxins. The biocidal effect of the CP treatment was confirmed on two species of cyanobacteria, Synechococcus elongatus and Merismopedia minutissima. The effectiveness of the technology in degrading microcystins was also demonstrated. The potential of this technology is based on its high energy efficiency, G(H2O2) ≈ 10 g kWh-1 and G(O3) ≈ 0.03 g kWh-1 (in deionised water), realistic applicability with throughput rates (> 1 m3 h-1), and comparatively easy scalability system.
Zobrazit více v PubMed
Al Momani F, Smith D, El-Din M (2008) Degradation of cyanobacteria toxin by advanced oxidation processes. J Hazard Mater 150:238–249. 10.1016/j.jhazmat.2007.04.087 PubMed
Anpilov AM, Barkhudarov EM, Bark YB, Zadiraka YV, Christofi M, Kozlov YN, Kossyi IA, Kop’ev VA, Silakov VP, Taktakishvili MI, Temchin SM (2001) Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide. J Phys D-Appl Phys 34:993–999. 10.1088/0022-3727/34/6/322
Asghar A, Lutze HV, Tuerk J, Schmidt TC (2022) Influence of water matrix on the degradation of organic micropollutants by ozone based processes: a review on oxidant scavenging mechanism. J Hazard Mater 429:1–25. 10.1016/j.jhazmat.2021.128189 PubMed
Attri P, Kim YH, Park DH, Park JH, Hong YJ, Uhm HS, Kim KN, Fridman A, Choi EH (2015) Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Sci Rep 5:1–8. 10.1038/srep09332 PubMed PMC
Bruggeman P, Leys C (2009) Non-thermal plasmas in and in contact with liquids. J Phys D-Appl Phys 42:1–28. 10.1088/0022-3727/42/5/053001
Bruggeman PJ et al (2016) Plasma-liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:1–59. 10.1088/0963-0252/25/5/053002
Buettner GR (1987) Spin trapping - electron-spin-resonance parameters of spin adducts. Free Radical Biol Med 3:259–303. 10.1016/S0891-5849(87)80033-3 PubMed
Cech J, Stahel P, Rahel J, Prokes L, Rudolf P, Marsalkova E, Marsalek B (2020) Mass production of plasma activated water: case studies of its biocidal effect on algae and cyanobacteria. Water 12:1–18. 10.3390/w12113167
Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–272. 10.1016/j.taap.2004.02.016 PubMed
Dai RH, Wang PF, Jia PL, Zhang Y, Chu XC, Wang YF (2016) A review on factors affecting microcystins production by algae in aquatic environments. World J Microbiol Biotechnol 32:1–7. 10.1007/s11274-015-2003-2 PubMed
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J (2019) Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem Rev 119:2043–2086. 10.1021/acs.chemrev.8b00554 PubMed
Drábková M, Admiraal W, Marsálek B (2007) Combined exposure to hydrogen peroxide and light -: Selective effects on cyanobacteria, green algae, and diatoms. Environ Sci Technol 41:309–314. 10.1021/es060746i PubMed
Dubey MK, Mohrschladt R, Donahue NM, Anderson JG (1997) Isotope specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J Phys Chem A 101:1494–1500. 10.1021/jp962332p
Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328. 10.1021/i560117a011
El Herry S, Fathalli A, Rejeb AJB, Bouaicha N (2008) Seasonal occurrence and toxicity of Micyocystis spp. and.7 Oscillatoria tenuis in the Lebna Dam. Tunisia Water Research 42:1263–1273. 10.1016/j.watres.2007.09.019 PubMed
Elovitz MS, von Gunten U, Kaiser HP (2000) Hydroxyl radical/ozone ratios during ozonation processes. II. The effect of temperature, pH, alkalinity, and DOM properties. Ozone-Science & Engineering 22:123–150. 10.1080/01919510008547216
Franc J-P, J.-M. M (2010): Fundamentals of cavitation. Fluid mechanics and its applications. Springer Dordrecht, XXII, 306 pp
Gaunt LF, Beggs CB, Georghiou GE (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269. 10.1109/TPS.2006.878381
Glaze WH (1987) Drinking-water treatment with ozone. Environ Sci Technol 21:224–230. 10.1021/es00157a001 PubMed
Gogate PR, Patil PN (2015) Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes. Ultrason Sonochem 25:60–69. 10.1016/j.ultsonch.2014.08.016 PubMed
Gorbanev Y, O’Connell D, Chechik V (2016) Non-thermal plasma in contact with water: the origin of species. Chemistry-a European Journal 22:3496–3505. 10.1002/chem.201503771 PubMed PMC
Gorbanev Y, Verlackt CCW, Tinck S, Tuenter E, Foubert K, Cos P, Bogaerts A (2018) Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet. Phys Chem Chem Phys 20:2797–2808. 10.1039/c7cp07616a PubMed
Gregor J, Marsálek B, Sípková H (2007) Detection and estimation of potentially toxic cyanobacteria in raw water at the drinking water treatment plant by in vivo fluorescence method. Water Res 41:228–234. 10.1016/j.watres.2006.08.011 PubMed
Halliwell B, Gutteridge JMC (2015) Measurement of reactive species, Free Radicals in Biology and Medicine (5th edn). Oxford University Press
He XX, de la Cruz AA, Hiskia A, Kaloudis T, O’Shea K, Dionysiou DD (2015) Destruction of microcystins (cyanotoxins) by UV-254 nm-based direct photolysis and advanced oxidation processes (AOPs): influence of variable amino acids on the degradation kinetics and reaction mechanisms. Water Res 74:227–238. 10.1016/j.watres.2015.02.011 PubMed
Hu X, Zhang Y, Wu RA, Liao XY, Liu DH, Cullen PJ, Zhou RW, Ding T (2022) Diagnostic analysis of reactive species in plasma-activated water (PAW): current advances and outlooks. J Phys D-Appl Phys 55:1–16. 10.1088/1361-6463/ac286a
Jiang B, Zheng JT, Qiu S, Wu MB, Zhang QH, Yan ZF, Xue QZ (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368. 10.1016/j.cej.2013.09.090
Kaushik NK, Ghimire B, Li Y, Adhikari M, Veerana M, Kaushik N, Jha N, Adhikari B, Lee SJ, Masur K, von Woedtke T, Weltmann KD, Choi EH (2019) Biological and medical applications of plasma-activated media, water and solutions. Biol Chem 400:39–62. 10.1515/hsz-2018-0226 PubMed
Khuntia S, Majumder SK, Ghosh P (2012) Microbubble-aided water and wastewater purification: a review. Rev Chem Eng 28:191–221. 10.1515/revce-2012-0007
Laroussi M (2005) Low temperature plasma-based sterilization: overview and state-of-the-art. Plasma Processes Polym 2:391–400. 10.1002/ppap.200400078
Lion Y, Gandin E, Vandevorst A (1980) On the production of nitroxide radicals by singlet oxygen reaction - an electron-paramagnetic-res study. Photochem Photobiol 31:305–309. 10.1111/j.1751-1097.1980.tb02545.x
Locke BR, Shih KY (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20:1–15. 10.1088/0963-0252/20/3/034006
Machala Z, Tarabová B, Sersenová D, Janda M, Hensel K (2019) Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions. J Phys D-Appl Phys 52:1–17. 10.1088/1361-6463/aae807
Marsalek B, Marsalkova E, Odehnalova K, Pochyly F, Rudolf P, Stahel P, Rahel J, Cech J, Fialova S, Zezulka S (2020) Removal of Microcystis aeruginosa through the combined effect of plasma discharge and hydrodynamic cavitation. Water 12:1–14. 10.3390/w12010008
Mason TJ, Lorimer JP, Bates DM, Zhao Y (1994) Dosimetry in sonochemistry - the use of aqueous terephthalate ion as a fluorescence monitor. Ultrason Sonochem 1:S91–S95. 10.1016/1350-4177(94)90004-3
Matthijs HCP, Visser PM, Reeze B, Meeuse J, Slot PC, Wijn G, Talens R, Huisman J (2012) Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Res 46:1460–1472. 10.1016/j.watres.2011.11.016 PubMed
Metcalf JS, Codd GA (2020) Co-occurrence of cyanobacteria and cyanotoxins with other environmental health hazards: impacts and implications. Toxins 12:1–12. 10.3390/toxins12100629 PubMed PMC
Natumi R, Janssen EML (2020) Cyanopeptide co-production dynamics beyond mirocystins and effects of growth stages and nutrient availability. Environ Sci Technol 54:6063–6072. 10.1021/acs.est.9b07334 PubMed
Park JY, Park S, Choe W, Yong HI, Jo C, Kim K (2017) Plasma-functionalized solution: a potent antimicrobial agent for biomedical applications from antibacterial therapeutics to biomaterial surface engineering. ACS Appl Mater Interfaces 9:43470–43477. 10.1021/acsami.7b14276 PubMed
Preece EP, Hardy FJ, Moore BC, Bryan M (2017) A review of microcystin detections in Estuarine and Marine waters: Environmental implications and human health risk. Harmful Algae 61:31–45. 10.1016/j.hal.2016.11.006
Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green-algae (cyanobacteria). J Appl Phycol 6:159–176. 10.1007/BF02186070
Rudolf P, Hudec M, Griger M, Stefan D (2013): Characterization of the cavitating flow in converging-diverging nozzle based on experimental investigations, 8th International Conference on Experimental Fluid Mechanics. EPJ Web of Conferences. E D P Sciences, TU Liberec, Kutna Hora, Czech Republic. 10.1051/epjconf/20146702101
Rudolf P, Pochylý F, St’ahel P, Ráhel J, Čech J, Maršálek B, (2019) Apparatus for purifying liquids and a method for purifying liquids using this apparatus. Czech Patent 308532:13
Sarc A, Stepisnik-Perdih T, Petkovsek M, Dular M (2017) The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation. Ultrason Sonochem 34:51–59. 10.1016/j.ultsonch.2016.05.020 PubMed
Schneider M, Bláha L (2020) Advanced oxidation processes for the removal of cyanobacterial toxins from drinking water. Environ Sci Eur 32:1–24. 10.1186/s12302-020-00371-0
Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757. 10.1021/cr010371d PubMed
Sharma VK, Triantis TM, Antoniou MG, He XX, Pelaez M, Han CS, Song WH, O’Shea KE, de la Cruz AA, Kaloudis T, Hiskia A, Dionysiou DD (2012) Destruction of microcystins by conventional and advanced oxidation processes: a review. Sep Purif Technol 91:3–17. 10.1016/j.seppur.2012.02.018
Sivakumar M, Pandit AB (2002) Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrason Sonochem 9:123–131. 10.1016/S1350-4177(01)00122-5 PubMed
Soyluoglu M, Kim D, Zaker Y, Karanfil T (2021) Stability of oxygen nanobubbles under freshwater conditions. Water Res 206:1–9. 10.1016/j.watres.2021.117749 PubMed
Soyluoglu M, Kim D, Karanfil T (2023) Characteristics and stability of ozone nanobubbles in freshwater conditions. Environ Sci Technol 57:21898–21907. 10.1021/acs.est.3c07443 PubMed
Staehelin J, Hoigne J (1982) Decomposition of ozone in water - rate of initiation by hydroxide ions and hydrogen-peroxide. Environ Sci Technol 16:676–681. 10.1021/es00104a009
Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. 10.1016/j.jmr.2005.08.013 PubMed
Svircev Z, Drobac D, Tokodi N, Mijovic B, Codd GA, Meriluoto J (2017) Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch Toxicol 91:621–650. 10.1007/s00204-016-1921-6 PubMed
Svircev Z, Lalic D, Bojadzija Savic G, Tokodi N, Backovic DD, Chen L, Meriluoto J, Codd GA (2019) Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 93:2429–2481. 10.1007/s00204-019-02524-4 PubMed
Temesgen T, Bui TT, Han M, Kim TI, Park H (2017) Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review. Adv Coll Interface Sci 246:40–51. 10.1016/j.cis.2017.06.011 PubMed
Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P (2006) Atmospheric pressure plasmas: a review. Spectrochimica Acta Part B-Atomic Spectroscopy 61:2–30. 10.1016/j.sab.2005.10.003
Van Goethem MW, Cowan DA (2019): Role of Cyanobacteria in the ecology of polar environments. In: CastroSowinski S (Editor), Ecological role of micro-organisms in the antarctic environment. Springer Polar Sciences. Springer International Publishing Ag, Cham, pp. 3–23. 10.1007/978-3-030-02786-5_1
Vasko CA, Liu DX, van Veldhuizen EM, Iza F, Bruggeman PJ (2014) Hydrogen peroxide production in an atmospheric pressure RF glow discharge: comparison of models and experiments. Plasma Chem Plasma Process 34:1081–1099. 10.1007/s11090-014-9559-8
Verlackt CCW, Van Boxem W, Bogaerts A (2018) Transport and accumulation of plasma generated species in aqueous solution. Phys Chem Chem Phys 20:6845–6859. 10.1039/c7cp07593f PubMed
Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535. 10.1063/1.1461829
Wandell RJ, Locke BR (2014) Hydrogen peroxide generation in low power pulsed water spray plasma reactors. Ind Eng Chem Res 53:609–618. 10.1021/ie402766t
Wang J, Zhang J, Shangguan Y, Yang G, Liu X (2024) Degradation performance and mechanism of microcystins in aquaculture water using low-temperature plasma technology. Environ Pollut 347:1–10. 10.1016/j.envpol.2024.123744 PubMed
Weenink EFJ, Luimstra VM, Schuurmans JM, Van Herk MJ, Visser PM, Matthijs HCP (2015) Combatting cyanobacteria with hydrogen peroxide: a laboratory study on the consequences for phytoplankton community and diversity. Front Microbiol 6:1–15. 10.3389/fmicb.2015.00714 PubMed PMC
Yen HK, Lin TF, Liao PC (2011) Simultaneous detection of nine cyanotoxins in drinking water using dual solid-phase extraction and liquid chromatography-mass spectrometry. Toxicon 58:209–218. 10.1016/j.toxicon.2011.06.003 PubMed
Zhao YM, Ojha S, Burgess CM, Sun DW, Tiwari BK (2020a) Inactivation efficacy and mechanisms of plasma activated water on bacteria in planktonic state. J Appl Microbiol 129:1248–1260. 10.1111/jam.14677 PubMed
Zhao YM, Patange A, Sun DW, Tiwari B (2020b) Plasma-activated water: physicochemical properties, microbial inactivation mechanisms, factors influencing antimicrobial effectiveness, and applications in the food industry. Comprehensive Reviews in Food Science and Food Safety 19:3951–3979. 10.1111/1541-4337.12644 PubMed
Zheng HX, Zheng Y, Zhu JS (2022) Recent developments in hydrodynamic cavitation reactors: cavitation mechanism, reactor design, and applications. Engineering 19:180–198. 10.1016/j.eng.2022.04.027