Length-mass relationships of pond macroinvertebrates do not hold between Southern and Northern Europe
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39703909
PubMed Central
PMC11657199
DOI
10.7717/peerj.18576
PII: 18576
Knihovny.cz E-resources
- Keywords
- Aquatic insects, Biomass, Freshwaters, Portugal, Secondary production, Size-weight relationships, Sweden,
- MeSH
- Invertebrates * physiology MeSH
- Biomass * MeSH
- Ecosystem MeSH
- Ponds * MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Portugal MeSH
- Sweden MeSH
The lack of reliable data on length-mass relationships, essential to obtain accurate biomass estimates, limits our ability to easily assess secondary production by aquatic invertebrates. In the absence of published equations from similar habitat conditions, authors often borrow equations developed in geographic regions with different climate conditions, which may bias biomass estimates. A literature overview of published size-mass relationships for Portugal and Sweden highlights the need for further data within these biogeographic regions. We increased the number of equations available to Southern and Northern Europe, developing 18 new length-mass relationships for two families and 10 genera in Portugal and Sweden. All equations were published for the first time for these countries, except the genus Asellus. Our length-mass relationships were obtained from specimens collected on a one-time sampling of eight ponds in Portugal and five ponds in Sweden during late spring in 2023. Dry mass (DM) was modelled as a function of body length (BL), using the natural log-linear function with a power model (ln DM = ln a + b × ln BL). The equations obtained were compared with linear mixed models testing the fixed effects of "body length" and "country", as well as their interaction. A comparison of the equations developed in this study showed country-specific differences for all taxa, expect the genus Caenis, indicating a low potential transferability of the equations between Southern and Northern Europe. In contrast, the comparison of the equation obtained for A. aquaticus in this study with an equation published for this taxon in Sweden showed great similarities, suggesting a high transferability. Recommending caution in the borrowing of published length-mass equations, that can differ drastically between different geographic and climatic regions, especially at larger sizes, we provide a series of guidelines and good practices in this field.
See more in PubMed
Atkinson D. Effects of temperature on the size of aquatic ectotherms: exceptions to the general rule. Journal of Thermal Biology. 1995;20(1–2):61–74. doi: 10.1016/0306-4565(94)00028-H. DOI
Azevedo-Pereira HVS, Graça MAS, González JM. Life history of Lepidostoma hirtum in an Iberian stream and its role in organic matter processing. Hydrobiologia. 2006;559(1):183–192. doi: 10.1007/s10750-005-1267-1. DOI
Basset A. Resource-mediated effects of stream pollution on food absorption of Asellus aquaticus (L.) populations. Oecologia. 1993;93(3):315–321. doi: 10.1007/BF00317872. PubMed DOI
Basset A, Glazier DS. Resource limitation and intraspecific patterns of weight × length variation among spring detritivores. Hydrobiologia. 1995;316(2):127–137. doi: 10.1007/BF00016894. DOI
Basset A, Rossi L. Competitive trophic niche modifications in three populations of detritivores. Functional Ecology. 1990;1(5):685–694. doi: 10.2307/2389737. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. 2014. ArXiv. DOI
Bauernfeind E, Soldan T. The mayflies of Europe (Ephemeroptera) Ollerup: Apollo Books; 2013.
Benke AC. Concepts and patterns of invertebrate production in running waters. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen. 1993;25(1):15–38. doi: 10.1080/03680770.1992.11900056. DOI
Benke AC, Huryn AD. Secondary production of macroinvertebrates. In: Hauer FR, Lamberti GA, editors. Methods in Stream Ecology. Second Edition. Burlington: Academic Press/Elsevier; 2007. pp. 691–710.
Benke AC, Huryn AD, Smock LA, Wallace JB. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society. 1999;18(3):308–343. doi: 10.2307/1468447. DOI
Bonacina L, Fasano F, Mezzanotte V, Fornaroli R. Effects of water temperature on freshwater macroinvertebrates: a systematic review. Biological Reviews. 2023;98(1):191–221. doi: 10.1111/brv.12903. PubMed DOI PMC
Brittain JE. The influence of temperature on nymphal growth rates in mountain stoneflies (Plecoptera) Ecology. 1983;64(3):440–446. doi: 10.2307/1939962. DOI
Burgherr P, Meyer EI. Regression analysis of linear body dimensions vs. dry mass in stream macroinvertebrates. Archiv für Hydrobiologie. 1997;139(1):101–112. doi: 10.1127/archiv-hydrobiol/139/1997/101. DOI
Byström P, Andersson J, Persson L, De Roos AM. Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char. Oikos. 2004;104(1):109–121. doi: 10.1111/j.0030-1299.2004.12759.x. DOI
Canhoto CMMML. A decomposição e utilização das folhas de Eucalyptus globulus como fonte alimentar por detritívoros aquáticos. Master thesis, University of Coimbra, Portugal. 1994.
Cedar Lake Ventures, Inc Weather spark: the weather year round anywhere on earth. 2019. http://weatherspark.com. [29 February 2024]. http://weatherspark.com
Cressa C. Dry mass estimates of some tropical aquatic insects. Revista de Biología Tropical. 1999;47:133–141. doi: 10.15517/rbt.v47i1-2.19062. DOI
Cunha MR, Moreira MH, Sorbe JC. The amphipod Corophium multisetosum (Corophiidae) in Ria de Aveiro (NW Portugal). II. Abundance, biomass and production. Marine Biology. 2000;137(4):651–660. doi: 10.1007/s002270000385. PubMed DOI
Dallas HF, Ross-Gillespie V. Sublethal effects of temperature on freshwater organisms, with special reference to aquatic insects. Water SA. 2015;41(5):712–726. doi: 10.4314/wsa.v41i5.15. DOI
De Knijf G, Billqvist M, van Grunsven RHA, Prunier F, Vinko D, Trottet A, Bellotto V, Clay J, Allen DJ. Measuring the pulse of European biodiversity. European Red List of Dragonflies & Damselflies (Odonata) Brussels: European Commission; 2024.
Dekanová V. Dĺžkovo-hmotnostné vzťahy vodného hmyzu a ich význam pre stanovenie biomasy. Bachelor’s thesis, Technická univerzita vo Zvolene, Zvolen, Slovakia. 2014.
Dekanová V, Streberová Z, Novikmec M, Svitok M. The effect of preservation on biomass and length estimates and its variation within and between two mayfly species. Limnology. 2023;24(3):181–191. doi: 10.1007/s10201-023-00715-8. DOI
Dekanová V, Venarsky MP, Bunn SE. Length-mass relationships of Australian aquatic invertebrates. Austral Ecology. 2022;47(1):120–126. doi: 10.1111/aec.13077. DOI
Dolný A, Harabiš F, Bárta D. Vážky (Insecta: Odonata) České republiky. Praha: Academia; 2016.
Eklöf J, Austin Å, Bergström U, Donadi S, Eriksson BD, Hansen J, Sundblad G. Size matters: relationships between body size and body mass of common coastal, aquatic invertebrates in the Baltic Sea. PeerJ. 2017;5(3):e2906. doi: 10.7717/peerj.2906. PubMed DOI PMC
Fehlinger L, Misteli B, Morant D, Juvigny-Khenafou N, Cunillera-Montcusí D, Chaguaceda F, Stamenković O, Fahy J, Kolář V, Halabowski D, Nash LN, Jakobsson E, Nava V, Tirozzi P, Urrutia Cordero P, Mocq J, Camacho Santamans A, Zamora-Marín JM, Marle P, Chonova T, Bonacina L, Mathieu-Resuge M, Suarez E, Osakpolor SE, Timoner P, Evtimova V, Nita D, Carreira BM, Tapolczai K, Martelo J, Gerber R, Dinu V, Henriques J, Selmeczy GB, Rimcheska B. The ecological role of permanent ponds in Europe: a review of dietary linkages to terrestrial ecosystems via emerging insects. Inland Waters. 2023;13(1):30–46. doi: 10.1080/20442041.2022.2111180. DOI
Ferreira V, Castela J, Rosa P, Tonin AM, Boyero L, Graça MA. Aquatic hyphomycetes, benthic macroinvertebrates and leaf litter decomposition in streams naturally differing in riparian vegetation. Aquatic Ecology. 2016;50(4):711–725. doi: 10.1007/s10452-016-9588-x. DOI
França S, Vinagre C, Pardal MA, Cabral HN. Spatial and temporal patterns of benthic invertebrates in the Tagus estuary, Portugal: comparison between subtidal and an intertidal mudflat. Scientia Marina. 2009;73:307–318. doi: 10.3989/scimar. DOI
Gaspar MB, Santos MN, Vasconcelos P. Weight-length relationships of 25 bivalve species (Mollusca: Bivalvia) from the Algarve coast (southern Portugal) Journal of the Marine Biological Association of the United Kingdom. 2001;81(5):805–807. doi: 10.1017/S0025315401004623. DOI
Gee JH. Population dynamics and morphometries of Gammarus pulex L.: evidence of seasonal food limitation in a freshwater detritivore. Freshwater Biology. 1988;19(3):333–343. doi: 10.1111/j.1365-2427.1988.tb00355.x. DOI
Giustini M, Miccoli FP, De Luca G, Cicolani B. Length-weight relationships for some plecoptera and ephemeroptera from a carbonate stream in central Apennine (Italy) Hydrobiologia. 2008;605(1):183–191. doi: 10.1007/s10750-008-9353-9. DOI
González JM, Basaguren A, Pozo J. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia. 2002;489(1/3):131–137. doi: 10.1023/A:1023220501921. DOI
González JM, Graça MAS. Conversion of leaf litter to secondary production by a shredding caddis-fly. Freshwater Biology. 2003;48(9):1578–1592. doi: 10.1046/j.1365-2427.2003.01110.x. DOI
Gowing G, Recher HF. Short note further comments on length-weight relationships of invertebrates. Australian Journal of Ecology. 1985;10(2):195. doi: 10.1111/j.1442-9993.1985.tb00881.x. DOI
Habdija I, Lajtner J, Belinić I. The contribution of gastropod biomass in macrobenthic communities of a karstic river. Internationale Revue der gesamten Hydrobiologie und Hydrographie. 1995;80(1):103–110. doi: 10.1002/iroh.19950800113. DOI
Hajiesmaeili M, Ayyoubzadeh SA, Abdoli A. Length-weight relationships for the benthic invertebrates of a Mountain River in the Southern Caspian Sea Basin, Iran. Journal of Agricultural Science and Technology. 2019;21:1831–1841.
Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. 2022. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html R Package version 0.4.6.
Hauer FR, Resh VH. Macroinvertebrates. In: Hauer FR, Lamberti GA, editors. Methods in Stream Ecology. Vol. 1. Burlington: Academic Press; 2017. pp. 297–319.
Hjelm J, Svanbäck R, Byström P, Persson L, Wahlström E. Diet-dependent body morphology and ontogenetic reaction norms in Eurasian perch. Oikos. 2001;95(2):311–323. doi: 10.1034/j.1600-0706.2001.950213.x. DOI
Huryn AD, Wallace JB. Life history and production of stream insects. Annual Review of Entomology. 2000;45(1):83–110. doi: 10.1146/annurev.ento.45.1.83. PubMed DOI
Jansson A. Identification of larval Corixidae (Heteroptera) of northern Europe. Annales Zoologici Fennici. 1969;6:289–312.
Johnston TA, Cunjak RA. Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshwater Biology. 1999;41(4):653–674. doi: 10.1046/j.1365-2427.1999.00400.x. DOI
Kriska G. Freshwater invertebrates in Central Europe: a field guide. Cham: Springer Nature; 2022.
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13. DOI
Lafuente E, Lürig MD, Rövekamp M, Matthews B, Buser C, Vorburger C, Räsänen K. Building on 150 years of knowledge: the freshwater isopod Asellus aquaticus as an integrative eco-evolutionary model system. Frontiers in Ecology and Evolution. 2021;9:748212. doi: 10.3389/fevo.2021.748212. DOI
Lillebø AI, Pardal MÂ, Marques JC. Population structure, dynamics and production of Hydrobia ulvae (Pennant) (Mollusca: Prosobranchia) along an eutrophication gradient in the Mondego estuary (Portugal) Acta Oecologica. 1999;20(4):289–304. doi: 10.1016/S1146-609X(99)00137-X. DOI
Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D. performance: an R package for assessment, comparison and testing of statistical models. Journal of Open Source Software. 2021;6(60):3139. doi: 10.21105/joss.03139. DOI
Mährlein M, Pätzig M, Brauns M, Dolman AM. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia. 2016;768(1):37–50. doi: 10.1007/s10750-015-2526-4. DOI
Maranhão P, Bengala N, Pardal M, Marques JC. The influence of environmental factors on the population dynamics, reproductive biology and productivity of Echinogammarus marinus Leach (Amphipoda, Gammaridae) in the Mondego estuary (Portugal) Acta Oecologica. 2001;22(3):139–152. doi: 10.1016/S1146-609X(01)01112-2. DOI
Marques JC, Gonçalves SC, Pardal MA, Chelazzi L, Colombini I, Fallaci M, Bouslama MF, El Gtari M, Charfi-Cheikhrouha F, Scapini F. Comparison of Talitrus saltator (Amphipoda, Talitridae) biology, dynamics, and secondary production in Atlantic (Portugal) and Mediterranean (Italy and Tunisia) populations. Estuarine, Coastal and Shelf Science. 2003;58(ser. 3):127–148. doi: 10.1016/S0272-7714(03)00042-8. DOI
Martin CA, Proulx R, Magnan P. The biogeography of insects’ length-dry mass relationships. Insect Conservation and Diversity. 2014;7(5):413–419. doi: 10.1111/icad.12063. DOI
Méthot G, Hudon C, Gagnon P, Pinel-Alloul B, Armellin A, Poirier AMT. Macroinvertebrate size-mass relationships: how specific should they be? Freshwater Science. 2012;31(3):750–764. doi: 10.1899/11-120.1. DOI
Meyer E. The relationship between body length parameters and dry mass in running water invertebrates. Archiv für Hydrobiologie. 1989;117:191–203. doi: 10.5555/19900501614. DOI
Meyer CK, Peterson SD, Whiles MR. Quantitative assessment of yield, precision, and cost-effectiveness of three wetland invertebrate sampling techniques. Wetlands. 2011;31(1):101–112. doi: 10.1007/s13157-010-0122-y. DOI
Miyasaka H, Genkai-Kato M, Miyake Y, Kishi D, Katano I, Doi H, Ohba S, Kuhara N. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology. 2008;9:75–80. doi: 10.1007/s10201-008-0238-4. DOI
Mocq J, Dekanová V, Boukal DS. Length-mass allometries of the larvae of aquatic dipterans: differences between taxa, morphological traits, and methods. Journal of Insect Science. 2024;24(1):10. doi: 10.1093/jisesa/ieae012. PubMed DOI PMC
Morin A, Nadon D. Size distribution of epilithic lotic invertebrates and implications for community metabolism. Journal of the North American Benthological Society. 1991;10(3):300–308. doi: 10.2307/1467603. DOI
Nakagawa S, Johnson PC, Schielzeth H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface. 2017;14(134):20170213. doi: 10.1098/rsif.2017.0213. PubMed DOI PMC
Naturdata Naturdata: Biodiversidade Online. 2012. http://naturdata.com http://naturdata.com
Needham AE. The Crustacea: some adaptations. The Irish Naturalists’ Journal. 1938;7:74–84.
Oliphant ZH, Hyslop EJ. Biomass, productivity, and biomass turnover (P/B) ratios of benthic macroinvertebrates in high elevation ponds in St. Ann, Jamaica (West Indies) Caribbean Journal of Science. 2020;50(2):275–300. doi: 10.18475/cjos.v50i2.a11. DOI
OpenStreetMap Contributers OpenStreetMap Database. 2021. http://www.openstreetmap.org. [22 October 2024]. http://www.openstreetmap.org
Pardal MA, Marques JC, Metelo I, Lillebø AI, Flindt MR. Impact of eutrophication on the life cycle, population dynamics and production of Ampithoe valida (Amphipoda) along an estuarine spatial gradient (Mondego estuary, Portugal) Marine Ecology Progress Series. 2000;196:207–219. doi: 10.3354/meps196207. DOI
Perkins DM, McKie BG, Malmqvist B, Gilmour SG, Reiss J, Woodward G. Environmental warming and biodiversity-ecosystem functioning in freshwater microcosms: partitioning the effects of species identity, richness and metabolism. Advances in Ecological Research. 2010;43:177–209. doi: 10.1016/B978-0-12-385005-8.00005-8. DOI
Persson A. Phosphorus release by fish in relation to external and internal load in a eutrophic lake. Limnology and Oceanography. 1997;42(3):577–583. doi: 10.4319/lo.1997.42.3.0577. DOI
Persson A, Brönmark C. Foraging capacities and effects of competitive release on ontogenetic diet shift in bream, Abramis brama. Oikos. 2002;97(2):271–281. doi: 10.1034/j.1600-0706.2002.970213.x. DOI
Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. New York: Springer Science & Business Media; 2006.
Poepperl R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen. 1998;7:379–386.
R Core Team R: a language and environment for statistical computing. 2021. http://www.R-project.org/ http://www.R-project.org/ R Foundation for Statistical Computing, Vienna, Austria.
Resh VH. Sampling variability and life history features: basic considerations in the design of aquatic insect studies. Journal of the Fisheries Board of Canada. 1979;36(3):290–311. doi: 10.1139/f79-047. DOI
Rigler FH, Downing JA. The calculation of secondary productivity. In: Rigler FH, Downing JA, editors. A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters. Oxford: Blackwell Scientific Publications; 1984. pp. 19–24.
Rosati I, Barbone E, Basset A. Length-mass relationships for transitional water benthic macroinvertebrates in Mediterranean and Black Sea ecosystems. Estuarine, Coastal and Shelf Science. 2012;113:231–239. doi: 10.1016/j.ecss.2012.08.008. DOI
Rozkošný R. Klič vodnych larev hmyzu. Praha: Československa Akademia Vĕd; 1980.
Rumohr H, Brey T, Ankar S. A compilation of biometric conversion factors for benthos invertebrates of the Baltic Sea. Hamburg: Institut für Meereskunde; 1987.
Sabo JL, Bastow JL, Power ME. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. Journal of the North American Benthological Society. 2002;21(2):336–343. doi: 10.2307/1468420. DOI
Schröder P. Biomasseparameter der Larvenstadien mitteleuropäischer Kriebelmückenarten (Diptera: Simuliidae) Archiv für Hydrobiologie. Supplementband. Monographische Beiträge. 1987;77:97–115.
Schuh RT, Slater JA. True bugs of the world (Hemiptera: Heteroptera): classification and natural history. New York: Cornell University Press; 1995.
Smock LA. Relationships between body size and biomass of aquatic insects. Freshwater Biology. 1980;10(4):375–383. doi: 10.1111/j.1365-2427.1980.tb01211.x. DOI
Sprung M. Macrobenthic secondary production in the intertidal zone of the Ria Formosa—a lagoon in southern Portugal. Estuarine, Coastal and Shelf Science. 1994;38(6):539–558. doi: 10.1006/ecss.1994.1037. DOI
Svanbäck R, Eklöv P, Fransson R, Holmgren K. Intraspecific competition drives multiple species resource polymorphism in fish communities. Oikos. 2008;117(1):114–124. doi: 10.1111/j.2007.0030-1299.16267.x. DOI
Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. Invertébrés d’eau douce: systématique, biologie, écologie. Paris: CNRS Éditions; 2010.
Tiago P. Biodiversity4all Research-Grade Observations. 2020. http://biodiversity4all.org http://biodiversity4all.org
Vasconcelos P, Moura P, Pereira F, Pereira AM, Gaspar MB. Morphometric relationships and relative growth of 20 uncommon bivalve species from the Algarve coast (southern Portugal) Journal of the Marine Biological Association of the United Kingdom. 2018;98(3):463–474. doi: 10.1017/S002531541600165X. DOI
Verovnik R, Sket B, Trontelj P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology. 2005;14(14):4355–4369. doi: 10.1111/j.1365-294X.2005.02745.x. PubMed DOI
Wallace JB, Webster JR. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology. 1996;41(1):115–139. doi: 10.1146/annurev.en.41.010196.000555. PubMed DOI
Walther DA, Whiles MR, Flinn MB, Butler DW. Assemblage-level estimation of nontanypodine chironomid growth and production in a southern Illinois stream. Journal of the North American Benthological Society. 2006;25(2):444–452. doi: 10.1899/0887-3593(2006)25[444:AEONCG]2.0.CO;2. DOI
Wetzel MA, Leuchs H, Koop JH. Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgoland Marine Research. 2005;59(3):206–213. doi: 10.1007/s10152-005-0220-z. DOI
Wetzel RG, Likens GE. The heat budget of lakes. In: Wetzel RG, Likens GE, editors. Limnological analyses. New York: Springer; 2000. pp. 45–56.
Wickham H. Data analysis. In: Wickham H, editor. ggplot2. Cham: Springer; 2016.
Zettel H, Nieser N, Polhemus DA. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie. Wien: Naturhistorisches Museum; 1999. The Naucoridae (Insecta: Heteroptera) of the Philippine Islands; pp. 43–105.