In Silico-Designed G-Quadruplex Targeting Peptide Attenuates VEGF-A Expression, Preventing Angiogenesis in Cancer Cells
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
39704035
DOI
10.1111/cbdd.70018
Knihovny.cz E-zdroje
- Klíčová slova
- G‐quadruplex, VEGF‐A, angiogenesis, cancer, peptide,
- MeSH
- angiogeneze MeSH
- G-kvadruplexy * účinky léků MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory farmakoterapie metabolismus patologie MeSH
- patologická angiogeneze * farmakoterapie metabolismus MeSH
- peptidy * chemie farmakologie MeSH
- promotorové oblasti (genetika) MeSH
- simulace molekulární dynamiky MeSH
- vaskulární endoteliální růstový faktor A * metabolismus genetika chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- peptidy * MeSH
- vaskulární endoteliální růstový faktor A * MeSH
Vascular endothelial growth factor-A (VEGF-A) is a growth factor and pluripotent cytokine that promotes angiogenesis in cancer cells, transitioning to an angiogenic phenotype. The binding of VEGF-A protein to VEGF receptors (VEGFR-1 and VEGFR-2) initiates a cascade of events that stimulates angiogenesis by facilitating the migration and enhancing the permeability of endothelial cells. The proximal promoter of the VEGF gene encompasses a 36-base pair region (from -85 to -50) that can form a stable G-quadruplex (G4) structure in specific conditions. The activity of the VEGF promoter is reliant on this structure. During cancer progression, the VEGF-A G4 succumbs to cellular pressure and fails to maintain a stable structure. This shifts the balance to form a duplex structure, increasing the transcription rate. Earlier research has tried to develop small-molecule ligands to target and stabilise G4, demonstrating the possibility of suppressing VEGF expression. However, they either lack specificity or toxic. Peptides, on the other hand, are significantly less studied as G4 binders. Here, we designed a peptide that successfully binds and stabilises the VEGF-A G4 while reducing its gene expression. This further alters the expression fate of the VEGF-A signalling cascade and blocks angiogenesis in cancer cells. We employed high-resolution nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulation to elucidate the chemical details of G4-peptide interaction. In addition, we used qPCR and western blot techniques to investigate the expression pattern of the molecules implicated in the VEGF-A signalling cascade. The study explores the intricate relationship between peptides and quadruplex structures, revealing valuable insights that can improve the design of pharmacophores targeting the dynamic quadruplex structure. The results of our study are encouraging, opening possibilities for advancements in, the characterisation and optimisation of peptides as G-quadruplex ligands in view of their potential therapeutic uses.
Chemical Biology Program Memorial Sloan Kettering Cancer Center New York New York USA
Department of Biological Science Bose Institute Unified Academic Campus Kolkata India
Zobrazit více v PubMed
Abhinand, C. S., R. Raju, S. J. Soumya, P. S. Arya, and P. R. Sudhakaran. 2016. “VEGF‐A/VEGFR2 Signaling Network in Endothelial Cells Relevant to Angiogenesis.” Journal of Cell Communication and Signaling 10: 347–354. https://doi.org/10.1007/s12079‐016‐0352‐8.
Abramson, J., J. Adler, J. Dunger, et al. 2024. “Accurate Structure Prediction of Biomolecular Interactions With AlphaFold 3.” Nature 630: 493–500. https://doi.org/10.1038/s41586‐024‐07487‐w.
Adams, J., P. J. Carder, S. Downey, et al. 2000. “Vascular Endothelial Growth Factor (VEGF) in Breast Cancer: Comparison of Plasma, Serum, and Tissue VEGF and Microvessel Density and Effects of Tamoxifen.” Cancer Research 60: 2898–2905.
Banerjee, N., O. Chatterjee, T. Roychowdhury, et al. 2023. “Sequence Driven Interaction of Amino Acids in De‐Novo Designed Peptides Determines c‐Myc G‐Quadruplex Unfolding Inducing Apoptosis in Cancer Cells.” Biochimica et Biophysica Acta 1867: 130267. https://doi.org/10.1016/j.bbagen.2022.130267.
Beauvarlet, J., P. Bensadoun, E. Darbo, et al. 2019. “Modulation of the ATM/Autophagy Pathway by a G‐Quadruplex Ligand Tips the Balance Between Senescence and Apoptosis in Cancer Cells.” Nucleic Acids Research 47: 2739–2756. https://doi.org/10.1093/nar/gkz095.
Behrendt, R., P. White, and J. Offer. 2016. “Advances in Fmoc Solid‐Phase Peptide Synthesis.” Journal of Peptide Science 22: 4–27. https://doi.org/10.1002/psc.2836.
Bhattacharya, S., G. Mandal, and T. Ganguly. 2010. “Detailed Spectroscopic Investigations to Reveal the Nature of Interaction of Anionic Porphyrin With Calf Thymus DNA.” Journal of Photochemistry and Photobiology B: Biology 101: 89–96. https://doi.org/10.1016/j.jphotobiol.2010.06.016.
Cao, Y., J. Arbiser, R. J. D'Amato, et al. 2011. “Forty‐Year Journey of Angiogenesis Translational Research.” Science Translational Medicine 3: 114rv3. https://doi.org/10.1126/scitranslmed.3003149.
Criscuolo, A., E. Napolitano, C. Riccardi, et al. 2022. “Insights Into the Small Molecule Targeting of Biologically Relevant G‐Quadruplexes: An Overview of NMR and Crystal Structures.” Pharmaceutics 14: 2361.
De Paola, F., A. M. Granato, E. Scarpi, et al. 2002. “Vascular Endothelial Growth Factor and Prognosis in Patients With Node‐Negative Breast Cancer.” International Journal of Cancer 98: 228–233. https://doi.org/10.1002/ijc.10118.
Duarte, A. R., E. Cadoni, A. S. Ressurreição, R. Moreira, and A. Paulo. 2018. “Design of Modular G‐Quadruplex Ligands.” ChemMedChem 13: 869–893. https://doi.org/10.1002/cmdc.201700747.
Figueiredo, J., J.‐L. Mergny, and C. Cruz. 2024. “G‐Quadruplex Ligands in Cancer Therapy: Progress, Challenges, and Clinical Perspectives.” Life Sciences 340: 122481. https://doi.org/10.1016/j.lfs.2024.122481.
Foy, K. C., Z. Liu, G. Phillips, M. Miller, and P. T. P. Kaumaya. 2011. “Combination Treatment With HER‐2 and VEGF Peptide Mimics Induces Potent Anti‐Tumor and Anti‐Angiogenic Responses In Vitro and In Vivo.” Journal of Biological Chemistry 286: 13626–13637. https://doi.org/10.1074/jbc.M110.216820.
Gaengel, K., G. Genové, A. Armulik, and C. Betsholtz. 2009. “Endothelial‐Mural Cell Signaling in Vascular Development and Angiogenesis.” Arteriosclerosis, Thrombosis, and Vascular Biology 29: 630–638. https://doi.org/10.1161/ATVBAHA.107.161521.
Gamble, P., R. Jaroensri, H. Wang, et al. 2021. “Determining Breast Cancer Biomarker Status and Associated Morphological Features Using Deep Learning.” Communications Medicine 1: 14. https://doi.org/10.1038/s43856‐021‐00013‐3.
Garon, E. B., T. E. Ciuleanu, O. Arrieta, et al. 2014. “Ramucirumab Plus Docetaxel Versus Placebo Plus Docetaxel for Second‐Line Treatment of Stage IV Non‐Small‐Cell Lung Cancer After Disease Progression on Platinum‐Based Therapy (REVEL): A Multicentre, Double‐Blind, Randomised Phase 3 Trial.” Lancet 384: 665–673. https://doi.org/10.1016/S0140‐6736(14)60845‐X.
Ghaly, G., H. Tallima, E. Dabbish, et al. 2023. “Anti‐Cancer Peptides: Status and Future.” Prospects 28: 1148.
Ghirardello, M., R. Shyam, and M. C. Galan. 2022. “Reengineering of Cancer Cell Surface Charges Can Modulate Cell Migration.” Chemical Communications (Cambridge, England) 58: 5522–5525. https://doi.org/10.1039/d2cc00402j.
Glaviano, A., A. S. C. Foo, H. Y. Lam, et al. 2023. “PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer.” Molecular Cancer 22: 138. https://doi.org/10.1186/s12943‐023‐01827‐6.
Hirschi, A., W. J. Martin, Z. Luka, L. V. Loukachevitch, and N. J. Reiter. 2016. “G‐Quadruplex RNA Binding and Recognition by the Lysine‐Specific Histone Demethylase‐1 Enzyme.” RNA 22: 1250–1260. https://doi.org/10.1261/rna.057265.116.
Huang, R., and B. L. T. Lau. 2016. “Biomolecule‐Nanoparticle Interactions: Elucidation of the Thermodynamics by Isothermal Titration Calorimetry.” Biochimica et Biophysica Acta 1860: 945–956. https://doi.org/10.1016/j.bbagen.2016.01.027.
Huang, S. Y., and X. Zou. 2014. “A Knowledge‐Based Scoring Function for Protein‐RNA Interactions Derived From a Statistical Mechanics‐Based Iterative Method.” Nucleic Acids Research 42: e55. https://doi.org/10.1093/nar/gku077.
Hurwitz, H., L. Fehrenbacher, W. Novotny, et al. 2004. “Bevacizumab Plus Irinotecan, Fluorouracil, and Leucovorin for Metastatic Colorectal Cancer.” New England Journal of Medicine 350: 2335–2342. https://doi.org/10.1056/NEJMoa032691.
Itatani, Y., K. Kawada, T. Yamamoto, and Y. Sakai. 2018. “Resistance to Anti‐Angiogenic Therapy in Cancer‐Alterations to Anti‐VEGF Pathway.” International Journal of Molecular Sciences 19: 1232. https://doi.org/10.3390/ijms19041232.
Kondo, K., T. Mashima, T. Oyoshi, et al. 2018. “Plastic Roles of Phenylalanine and Tyrosine Residues of TLS/FUS in Complex Formation With the G‐Quadruplexes of Telomeric DNA and TERRA.” Scientific Reports 8: 2864. https://doi.org/10.1038/s41598‐018‐21142‐1.
Kostopoulos, I., P. Arapantoni‐Dadioti, H. Gogas, et al. 2006. “Evaluation of the Prognostic Value of HER‐2 and VEGF in Breast Cancer Patients Participating in a Randomized Study With Dose‐Dense Sequential Adjuvant Chemotherapy.” Breast Cancer Research and Treatment 96: 251–261. https://doi.org/10.1007/s10549‐005‐9062‐2.
Lamiable, A., P. Thévenet, J. Rey, M. Vavrusa, P. Derreumaux, and P. Tufféry. 2016. “PEP‐FOLD3: Faster De Novo Structure Prediction for Linear Peptides in Solution and in Complex.” Nucleic Acids Research 44: W449–W454. https://doi.org/10.1093/nar/gkw329.
Le Gall, M., J. C. Chambard, J. P. Breittmayer, et al. 2000. “The p42/p44 MAP Kinase Pathway Prevents Apoptosis Induced by Anchorage and Serum Removal.” Molecular Biology of the Cell 11: 1103–1112. https://doi.org/10.1091/mbc.11.3.1103.
Le, W., B. Chen, Z. Cui, Z. Liu, and D. Shi. 2019. “Detection of Cancer Cells Based on Glycolytic‐Regulated Surface Electrical Charges.” Biophysics Reports 5: 10–18. https://doi.org/10.1007/s41048‐018‐0080‐0.
Liang, X., X. Zou, L. Tan, and W. Zhu. 2010. “Study on Nucleic Acid (CT‐DNA and Yeast tRNA) Binding Behaviors and Cytotoxic Properties of a Heterodinuclear Ru(II)‐co(III) Polypyridyl Complex.” Journal of Inorganic Biochemistry 104: 1259–1266. https://doi.org/10.1016/j.jinorgbio.2010.08.006.
Lin, C., J. Dickerhoff, and D. Yang. 2019. “NMR Studies of G‐Quadruplex Structures and G‐Quadruplex‐Interactive Compounds.” Methods in Molecular Biology 2035: 157–176. https://doi.org/10.1007/978‐1‐4939‐9666‐7_9.
Liu, Z.‐L., H.‐H. Chen, L.‐L. Zheng, L.‐P. Sun, and L. Shi. 2023. “Angiogenic Signaling Pathways and Anti‐Angiogenic Therapy for Cancer.” Signal Transduction and Targeted Therapy 8: 198. https://doi.org/10.1038/s41392‐023‐01460‐1.
Lopes‐Coelho, F., F. Martins, S. A. Pereira, and J. Serpa. 2021. “Anti‐Angiogenic Therapy: Current Challenges and Future Perspectives.” International Journal of Molecular Sciences 22, no. 7: 3765. https://doi.org/10.3390/ijms22073765.
Lopez‐Gonzalez, L., A. Sanchez Cendra, C. Sanchez Cendra, et al. 2024. “Exploring Biomarkers in Breast Cancer: Hallmarks of Diagnosis, Treatment, and Follow‐Up in Clinical Practice.” Medicina 60: 168. https://doi.org/10.3390/medicina60010168.
Manders, P., L. V. A. M. Beex, V. C. G. Tjan‐Heijnen, et al. 2002. “The Prognostic Value of Vascular Endothelial Growth Factor in 574 Node‐Negative Breast Cancer Patients Who Did Not Receive Adjuvant Systemic Therapy.” British Journal of Cancer 87: 772–778. https://doi.org/10.1038/sj.bjc.6600555.
Maraming, P., S. Klaynongsruang, P. Boonsiri, et al. 2019. “The Cationic Cell‐Penetrating KT2 Peptide Promotes Cell Membrane Defects and Apoptosis With Autophagy Inhibition in Human HCT 116 Colon Cancer Cells.” Journal of Cellular Physiology 234: 22116–22129. https://doi.org/10.1002/jcp.28774.
Martiny‐Baron, G., and D. Marmé. 1995. “VEGF‐Mediated Tumour Angiogenesis: A New Target for Cancer Therapy.” Current Opinion in Biotechnology 6: 675–680. https://doi.org/10.1016/0958‐1669(95)80111‐1.
Marzano, M., A. P. Falanga, D. Marasco, et al. 2020. “Evaluation of an Analogue of the Marine ε‐PLL Peptide as a Ligand of G‐Quadruplex DNA Structures.” Marine Drugs 18, no. 1: 49. https://doi.org/10.3390/md18010049.
Masoudi‐Sobhanzadeh, Y., H. Motieghader, and A. Masoudi‐Nejad. 2019. “FeatureSelect: A Software for Feature Selection Based on Machine Learning Approaches.” BMC Bioinformatics 20: 170. https://doi.org/10.1186/s12859‐019‐2754‐0.
Melincovici, C. S., A. B. Boşca, S. Şuşman, et al. 2018. “Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis.” Romanian Journal of Morphology and Embryology 59: 455–467.
Motzer, R. J., T. E. Hutson, D. Cella, et al. 2013. “Pazopanib Versus Sunitinib in Metastatic Renal‐Cell Carcinoma.” New England Journal of Medicine 369: 722–731. https://doi.org/10.1056/NEJMoa1303989.
Motzer, R. J., T. E. Hutson, P. Tomczak, et al. 2007. “Sunitinib Versus Interferon Alfa in Metastatic Renal‐Cell Carcinoma.” New England Journal of Medicine 356: 115–124. https://doi.org/10.1056/NEJMoa065044.
Muench, D., F. Rezzoug, S. D. Thomas, et al. 2019. “Quadruplex‐Forming Oligonucleotide Targeted to the VEGF Promoter Inhibits Growth of Non‐Small Cell Lung Cancer Cells.” PLoS One 14: e0211046. https://doi.org/10.1371/journal.pone.0211046.
Nasiri, F., F. F. Atanaki, S. Behrouzi, K. Kavousi, and M. C. A. C. P. Bagheri. 2021. “In Silico Cell‐Penetrating Anticancer Peptide Prediction Using a Novel Bioinformatics Framework.” ACS Omega 6: 19846–19859. https://doi.org/10.1021/acsomega.1c02569.
Niu, G., and X. Chen. 2010. “Vascular Endothelial Growth Factor as an Anti‐Angiogenic Target for Cancer Therapy.” Current Drug Targets 11: 1000–1017. https://doi.org/10.2174/138945010791591395.
Orlowski, R. Z., G. W. Small, and Y. Y. Shi. 2002. “Evidence That Inhibition of p44/42 Mitogen‐Activated Protein Kinase Signaling Is a Factor in Proteasome Inhibitor‐Mediated Apoptosis.” Journal of Biological Chemistry 277: 27864–27871. https://doi.org/10.1074/jbc.M201519200.
Pagès, G., J. Milanini, D. E. Richard, et al. 2000. “Signaling Angiogenesis via p42/p44 MAP Kinase Cascade.” Annals of the New York Academy of Sciences 902: 187–200. https://doi.org/10.1111/j.1749‐6632.2000.tb06313.x.
Pietilä, I., D. Van Mourik, A. Tamelander, et al. 2019. “Temporal Dynamics of VEGFA‐Induced VEGFR2/FAK Co‐Localization Depend on SHB.” Cells 8: 1645.
Qin, Y., Y. Zhang, S. Yan, and L. Ye. 2010. “A Comparison Study on the Interaction of Hyperoside and Bovine Serum Albumin With Tachiya Model and Stern‐Volmer Equation.” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 75: 1506–1510. https://doi.org/10.1016/j.saa.2010.02.007.
Ribeiro‐Silva, A., F. Ribeiro do Vale, and S. Zucoloto. 2006. “Vascular Endothelial Growth Factor Expression in the Basal Subtype of Breast Carcinoma.” American Journal of Clinical Pathology 125: 512–518. https://doi.org/10.1309/d744‐c4nm‐15j3‐b00d.
Richard, D. E., E. Berra, E. Gothié, D. Roux, and J. Pouysségur. 1999. “p42/p44 Mitogen‐Activated Protein Kinases Phosphorylate Hypoxia‐Inducible Factor 1α (HIF‐1α) and Enhance the Transcriptional Activity of HIF‐1.” Journal of Biological Chemistry 274: 32631–32637. https://doi.org/10.1074/jbc.274.46.32631.
Rust, R., C. Gantner, and M. E. Schwab. 2019. “Pro‐ and Antiangiogenic Therapies: Current Status and Clinical Implications.” FASEB Journal 33: 34–48. https://doi.org/10.1096/fj.201800640RR.
Saputra, T. A., I. Indra, S. A. Syamsu, et al. 2022. “Vascular Endothelial Growth Factor‐A Expression Is Significantly Correlated With HER2 Expression in Late‐Stage Breast Cancer Patients.” Breast Disease 41: 433–438. https://doi.org/10.3233/bd‐229006.
Sengupta, P., N. Banerjee, T. Roychowdhury, A. Dutta, S. Chattopadhyay, and S. Chatterjee. 2018. “Site‐Specific Amino Acid Substitution in Dodecameric Peptides Determines the Stability and Unfolding of c‐MYC Quadruplex Promoting Apoptosis in Cancer Cells.” Nucleic Acids Research 46: 9932–9950. https://doi.org/10.1093/nar/gky824.
Sun, D., K. Guo, and Y.‐J. Shin. 2011. “Evidence of the Formation of G‐Quadruplex Structures in the Promoter Region of the Human Vascular Endothelial Growth Factor Gene.” Nucleic Acids Research 39: 1256–1265. https://doi.org/10.1093/nar/gkq926.
Sun, D., W. J. Liu, K. Guo, et al. 2008. “The Proximal Promoter Region of the Human Vascular Endothelial Growth Factor Gene Has a G‐Quadruplex Structure That Can Be Targeted by G‐Quadruplex‐Interactive Agents.” Molecular Cancer Therapeutics 7: 880–889. https://doi.org/10.1158/1535‐7163.Mct‐07‐2119.
Tan, J., C. Vonrhein, O. S. Smart, et al. 2009. “The SARS‐Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G‐Quadruplexes.” PLoS Pathogens 5: e1000428. https://doi.org/10.1371/journal.ppat.1000428.
Tannock, I. F., K. Fizazi, S. Ivanov, et al. 2013. “Aflibercept Versus Placebo in Combination With Docetaxel and Prednisone for Treatment of Men With Metastatic Castration‐Resistant Prostate Cancer (VENICE): A Phase 3, Double‐Blind Randomised Trial.” Lancet Oncology 14: 760–768. https://doi.org/10.1016/S1470‐2045(13)70184‐0.
Vogl, G., H. Bartel, O. Dietze, and C. Hauser‐Kronberger. 2006. “HER2 Is Unlikely to Be Involved in Directly Regulating Angiogenesis in Human Breast Cancer.” Applied Immunohistochemistry & Molecular Morphology: AIMM 14: 138–145. https://doi.org/10.1097/01.pai.0000168591.58721.a6.
Wu, Y., L. P. Zan, X. D. Wang, et al. 2014. “Stabilization of VEGF G‐Quadruplex and Inhibition of Angiogenesis by Quindoline Derivatives.” Biochimica et Biophysica Acta (BBA) ‐ General Subjects 1840: 2970–2977. https://doi.org/10.1016/j.bbagen.2014.06.002.
Xie, M., D. Liu, and Y. Yang. 2020. “Anti‐Cancer Peptides: Classification, Mechanism of Action, Reconstruction and Modification.” Open Biology 10: 200004. https://doi.org/10.1098/rsob.200004.
Yan, Y., H. Tao, J. He, and S.‐Y. Huang. 2020. “The HDOCK Server for Integrated Protein–Protein Docking.” Nature Protocols 15: 1829–1852. https://doi.org/10.1038/s41596‐020‐0312‐x.
Yan, Y., D. Zhang, P. Zhou, B. Li, and S. Y. Huang. 2017. “HDOCK: A Web Server for Protein‐Protein and Protein‐DNA/RNA Docking Based on a Hybrid Strategy.” Nucleic Acids Research 45: W365–W373. https://doi.org/10.1093/nar/gkx407.
Yang, Y., J. Guo, M. Li, et al. 2024. “Cancer Stem Cells and Angiogenesis.” Pathology, Research and Practice 253: 155064. https://doi.org/10.1016/j.prp.2023.155064.
Yi, Y., L. Suo, H. Ma, et al. 2024. “The Role of MDM2 in Angiogenesis: Implications for Endothelial Tip Cell Formation.” In Vitro Cellular & Developmental Biology. Animal 60: 983–995. https://doi.org/10.1007/s11626‐024‐00946‐8.
Zuffo, M., A. Guédin, E. D. Leriche, et al. 2018. “More Is Not Always Better: Finding the Right Trade‐Off Between Affinity and Selectivity of a G‐Quadruplex Ligand.” Nucleic Acids Research 46: e115. https://doi.org/10.1093/nar/gky607.