Golden era of radiosensitizers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
39711799
PubMed Central
PMC11659289
DOI
10.3389/fvets.2024.1450776
Knihovny.cz E-zdroje
- Klíčová slova
- gold nanoparticles, in vivo, radiosensitizers, radiotherapy, tumor sensitizing,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
The past 30 years have brought undeniable progress in medicine, biology, physics, and research. Knowledge of the nature of the human body, diseases, and disorders has been constantly improving, and the same is true regarding their treatment and diagnosis. One of the greatest advances in recent years has been the introduction of nanoparticles (NPs) into medicine. NPs refer to a material at a nanometer scale (0.1-100 nm) with features (specific physical, chemical, and biological properties) that are broadly and increasingly used in the medical field. Their applications in cancer treatment and radiotherapy seem particularly attractive. In this field, inorganic/metal NPs with high atomic number Z have been employed mainly due to their ability to enhance ionizing radiation's photoelectric and Compton effects and thereby increase conventional radiation therapy's efficacy. The improvement NPs enable relates to their enhanced permeation ability and longer retention effect in tumor cells, capacity to reduce toxicity of commercially available cancer drugs through advanced NPs drug delivery systems, radiation sensitizers of tumors, or enhancers of radiation doses to tumors. Advanced options according to size, core, and surface modification allow even such multimodal approaches in therapy as nanotheranostics or combined treatments. The current state of knowledge emphasizes the role of gold nanoparticles (AuNPs) in sensitizing tumors to radiation. We have reviewed AuNPs and their radiosensitizing power during radiation treatment. Our results are divided into groups based on AuNPs' surface modification and/or core structure design. This study provides a complete summary of the in vivo sensitizing effect of AuNPs, surface-modified AuNPs, and AuNPs combined with different elements, providing evidence for further successful veterinarian and clinical implementation.
Department of Nursing Faculty of Health Studies University of Pardubice Pardubice Czechia
Department of Radiobiology Military Faculty of Medicine University of Defence Hradec Kralove Czechia
Zobrazit více v PubMed
Lilley J, Murray LJ. Radiotherapy: technical aspects. Medicine (Abingdon). (2023) 51:11–6. doi: 10.1016/j.mpmed.2022.10.003 DOI
Jorgensen TJ. Enhancing radiosensitivity: targeting the DNA repair pathways. Cancer Biol Ther. (2009) 8:665–70. doi: 10.4161/cbt.8.8.8304 PubMed DOI
Barton MB, Jacob S, Shafiq J, Wong K, Thompson SR, Hanna TP, et al. . Estimating the demand for radiotherapy from the evidence: a review of changes from 2003 to 2012. Radiother Oncol. (2014) 112:140–4. doi: 10.1016/j.radonc.2014.03.024, PMID: PubMed DOI
Polgár C, Ott OJ, Hildebrandt G, Kauer-Dorner D, Knauerhase H, Major T, et al. . Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol. (2017) 18:259–68. doi: 10.1016/S1470-2045(17)30011-6, PMID: PubMed DOI
Wei J, Zhu K, Yang Z, Zhou Y, Xia Z, Ren J, et al. . Hypoxia-induced autophagy is involved in Radioresistance via HIF1A-associated Beclin-1 in glioblastoma Multiforme. Heliyon. (2023) 9:e12820. doi: 10.1016/j.heliyon.2023.e12820, PMID: PubMed DOI PMC
Oronsky BT, Knox SJ, Scicinski J. Six degrees of separation: the oxygen effect in the development of radiosensitizers. Transl Oncol. (2011) 4:189–98. doi: 10.1593/tlo.11166, PMID: PubMed DOI PMC
He L, Lai H, Chen T. Dual-function nanosystem for synergetic cancer chemo−/radiotherapy through ROS-mediated signaling pathways. Biomaterials. (2015) 51:30–42. doi: 10.1016/j.biomaterials.2015.01.063, PMID: PubMed DOI
Kim MS, Lee E-J, Kim J-W, Chung US, Koh WG, Keum KC, et al. . Gold nanoparticles enhance anti-tumor effect of radiotherapy to hypoxic tumor. Radiat Oncol J. (2016) 34:230–8. doi: 10.3857/roj.2016.01788, PMID: PubMed DOI PMC
Her S, Jaffray DA, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev. (2017) 109:84–101. doi: 10.1016/j.addr.2015.12.012, PMID: PubMed DOI
Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. (2013) 341:63–72. doi: 10.1016/j.canlet.2012.11.019 PubMed DOI
Lin A, Maity A. Molecular pathways: a novel approach to targeting hypoxia and improving radiotherapy efficacy via reduction in oxygen demand. Clin Cancer Res. (2015) 21:1995–2000. doi: 10.1158/1078-0432.CCR-14-0858, PMID: PubMed DOI PMC
Rey S, Schito L, Koritzinsky M, Wouters BG. Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev. (2017) 109:45–62. doi: 10.1016/j.addr.2016.10.002 PubMed DOI
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev. (2017) 109:63–73. doi: 10.1016/j.addr.2016.02.002, PMID: PubMed DOI
Lalla RV, Treister N, Sollecito T, Schmidt B, Patton LL, Mohammadi K, et al. . Oral complications at 6 months after radiation therapy for head and neck cancer. Oral Dis. (2017) 23:1134–43. doi: 10.1111/odi.12710, PMID: PubMed DOI PMC
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer. (2004) 4:437–47. doi: 10.1038/nrc1367, PMID: PubMed DOI
Wang H, Mu X, He H, Zhang XD. Cancer Radiosensitizers. Trends Pharmacol Sci. (2018) 39:24–48. doi: 10.1016/j.tips.2017.11.003 PubMed DOI
Gong L, Zhang Y, Liu C, Zhang M, Han S. Application of Radiosensitizers in Cancer radiotherapy. Int J Nanomedicine. (2021) 16:1083–102. doi: 10.2147/IJN.S290438, PMID: PubMed DOI PMC
Adams GE. Chemical RADIOSENSITIZATION of hypoxic cells. Br Med Bull. (1973) 29:48–53. doi: 10.1093/oxfordjournals.bmb.a070956 PubMed DOI
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv. (2023) 13:8606–29. doi: 10.1039/D2RA07863E, PMID: PubMed DOI PMC
Kempson I. Mechanisms of nanoparticle radiosensitization. Wiley Interdiscip Rev Nanomed Nanobiotechnol. (2021) 13:e1656. doi: 10.1002/wnan.1656 PubMed DOI
Varzandeh M, Labbaf S, Varshosaz J, Laurent S. An overview of the intracellular localization of high-Z nanoradiosensitizers. Prog Biophys Mol Biol. (2022) 175:14–30. doi: 10.1016/j.pbiomolbio.2022.08.006, PMID: PubMed DOI
Babaei M, Ganjalikhani M. The potential effectiveness of nanoparticles as radio sensitizers for radiotherapy. Bioimpacts. (2014) 4:15–20. doi: 10.5681/bi.2014.003 PubMed DOI PMC
Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ. Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol. (2016) 7:11. doi: 10.1186/s12645-016-0024-7, PMID: PubMed DOI PMC
Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. (2011) 63:136–51. doi: 10.1016/j.addr.2010.04.009 PubMed DOI
Bolkestein M, de Blois E, Koelewijn SJ, Eggermont AMM, Grosveld F, de Jong M, et al. . Investigation of factors determining the enhanced permeability and retention effect in subcutaneous xenografts. J Nucl Med. (2016) 57:601–7. doi: 10.2967/jnumed.115.166173, PMID: PubMed DOI
Russell LM, Dawidczyk CM, Searson PC. Quantitative evaluation of the enhanced permeability and retention (EPR) effect. Methods Mol Biol. (2017) 1530:247–54. doi: 10.1007/978-1-4939-6646-2_14 PubMed DOI
Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. (2013) 30:2512–22. doi: 10.1007/s11095-012-0958-3, PMID: PubMed DOI
Cong VT, Tilley RD, Sharbeen G, Phillips PA, Gaus K, Gooding JJ, et al. . How to exploit different endocytosis pathways to allow selective delivery of anticancer drugs to cancer cells over healthy cells. Chem Sci. 12:15407–17. doi: 10.1039/d1sc04656j PubMed DOI PMC
Liu J, Liang Y, Liu T, Li D, Yang X. Anti-EGFR-conjugated hollow gold Nanospheres enhance Radiocytotoxic targeting of cervical Cancer at megavoltage radiation energies. Nanoscale Res Lett. (2015) 10:218. doi: 10.1186/s11671-015-0923-2, PMID: PubMed DOI PMC
Rathinaraj P, Lee K, Choi Y, Park SY, Kwon OH, Kang IK. Targeting and molecular imaging of HepG2 cells using surface-functionalized gold nanoparticles. J Nanopart Res. (2015) 17:311. doi: 10.1007/s11051-015-3118-y DOI
Mundekkad D, Cho WC. Nanoparticles in clinical translation for Cancer therapy. Int J Mol Sci. (2022) 23:1685. doi: 10.3390/ijms23031685, PMID: PubMed DOI PMC
Maggiorella L, Barouch G, Devaux C, Pottier A, Deutsch E, Bourhis J, et al. . Nanoscale radiotherapy with hafnium oxide nanoparticles. Future Oncol. (2012) 8:1167–81. doi: 10.2217/fon.12.96, PMID: PubMed DOI
Zhang P, Darmon A, Marill J, Mohamed Anesary N, Paris S. Radiotherapy-activated hafnium oxide nanoparticles produce Abscopal effect in a mouse colorectal Cancer model. Int J Nanomedicine. (2020) 15:3843–50. doi: 10.2147/IJN.S250490, PMID: PubMed DOI PMC
Bagley AF, Ludmir EB, Maitra A, Minsky BD, Li Smith G, das P, et al. . NBTXR3, a first-in-class radioenhancer for pancreatic ductal adenocarcinoma: report of first patient experience. Clin Transl Radiat Oncol. (2022) 33:66–9. doi: 10.1016/j.ctro.2021.12.012, PMID: PubMed DOI PMC
Lux F, Tran VL, Thomas E, et al. . AGuIX® from bench to bedside-transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. Br J Radiol. (2019) 92:20180365. PubMed PMC
Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics. (2020) 10:1319–31. doi: 10.7150/thno.37543, PMID: PubMed DOI PMC
Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic Iron oxide nanoparticles—current and prospective medical applications. Materials (Basel). (2019) 12:617. doi: 10.3390/ma12040617, PMID: PubMed DOI PMC
Chen Y, Yang J, Fu S, Wu J. Gold nanoparticles as Radiosensitizers in Cancer radiotherapy. Int J Nanomedicine. (2020) 15:9407–30. doi: 10.2147/IJN.S272902, PMID: PubMed DOI PMC
Penninckx S, Heuskin A-C, Michiels C, Lucas S. Gold nanoparticles as a potent Radiosensitizer: a transdisciplinary approach from physics to patient. Cancers. (2020) 12:2021. doi: 10.3390/cancers12082021, PMID: PubMed DOI PMC
Alhussan A, Bozdoğan EPD, Chithrani DB. Combining gold nanoparticles with other Radiosensitizing agents for unlocking the full potential of Cancer radiotherapy. Pharmaceutics. (2021) 13:442. doi: 10.3390/pharmaceutics13040442, PMID: PubMed DOI PMC
Hainfeld JF, Slatkin DN, Smilowitz HM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol. (2004) 49:N309–15. doi: 10.1088/0031-9155/49/18/N03 PubMed DOI
Haume K, Rosa S, Grellet S, Śmiałek MA, Butterworth KT, Solov’yov AV, et al. . Gold nanoparticles for cancer radiotherapy: a review. Cancer Nanotechnol. (2016) 7:8. doi: 10.1186/s12645-016-0021-x, PMID: PubMed DOI PMC
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. (2016) 99:28–51. doi: 10.1016/j.addr.2015.09.012, PMID: PubMed DOI PMC
Leopold LF, Tódor IS, Diaconeasa Z, Rugină D, Ştefancu A, Leopold N, et al. . Assessment of PEG and BSA-PEG gold nanoparticles cellular interaction. Colloids Surf A Physicochem Eng Asp. (2017) 532:70–6. doi: 10.1016/j.colsurfa.2017.06.061 DOI
Chang M-Y, Shiau A-L, Chen Y-H, Chang CJ, Chen HHW, Wu CL. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. (2008) 99:1479–84. doi: 10.1111/j.1349-7006.2008.00827.x, PMID: PubMed DOI PMC
Chen N, Yang W, Bao Y, Xu H, Qin S, Tu Y. BSA capped au nanoparticle as an efficient sensitizer for glioblastoma tumor radiation therapy. RSC Adv. (2015) 5:40514–20. doi: 10.1039/C5RA04013B DOI
Hassan M, Nakayama M, Salah M, Akasaka H, Kubota H, Nakahana M, et al. . A comparative assessment of mechanisms and effectiveness of Radiosensitization by titanium peroxide and gold nanoparticles. Nanomaterials (Basel). (2020) 10:1125. doi: 10.3390/nano10061125, PMID: PubMed DOI PMC
Liu S, Piao J, Liu Y, Tang JL, Liu P, Yang DP, et al. . Radiosensitizing effects of different size bovine serum albumin-templated gold nanoparticles on H22 hepatoma-bearing mice. Nanomedicine (Lond). (2018) 13:1371–83. doi: 10.2217/nnm-2018-0059, PMID: PubMed DOI
Janic B, Brown SL, Neff R, Liu F, Mao G, Chen Y, et al. . Therapeutic enhancement of radiation and immunomodulation by gold nanoparticles in triple negative breast cancer. Cancer Biol Ther. (2021) 22:124–35. doi: 10.1080/15384047.2020.1861923, PMID: PubMed DOI PMC
Bhattarai SR, Derry PJ, Aziz K, Singh PK, Khoo AM, Chadha AS, et al. . Gold nanotriangles: scale up and X-ray radiosensitization effects in mice. Nanoscale. (2017) 9:5085–93. doi: 10.1039/C6NR08172J, PMID: PubMed DOI PMC
Mulgaonkar A, Moeendarbari S, Silvers W, Hassan G, Sun X, Hao Y, et al. . Hollow gold nanoparticles as efficient in vivo Radiosensitizing agents for radiation therapy of breast Cancer. J Biomed Nanotechnol. (2017) 13:566–74. doi: 10.1166/jbn.2017.2367 DOI
Chuang Y-C, Hsia Y, Chu C-H, Lin LJ, Sivasubramanian M, Lo LW. Precision control of the large-scale green synthesis of biodegradable gold nanodandelions as potential radiotheranostics. Biomater Sci. (2019) 7:4720–9. doi: 10.1039/C9BM00897G, PMID: PubMed DOI
Vines JB, Yoon J-H, Ryu N-E, Lim DJ, Park H. Gold nanoparticles for Photothermal Cancer therapy. Front Chem. (2019) 7:7. doi: 10.3389/fchem.2019.00167 PubMed DOI PMC
Zhang Y, Liu J, Yu Y, Chen S, Huang F, Yang C, et al. . Enhanced radiotherapy using photothermal therapy based on dual-sensitizer of gold nanoparticles with acid-induced aggregation. Nanomedicine. (2020) 29:102241. doi: 10.1016/j.nano.2020.102241, PMID: PubMed DOI
Li Q, Hang L, Jiang W, Dou J, Xiao L, Tang X, et al. . Pre- and post-irradiation mild hyperthermia enabled by NIR-II for sensitizing radiotherapy. Biomaterials. (2020) 257:120235. doi: 10.1016/j.biomaterials.2020.120235 PubMed DOI
Chattopadhyay N, Cai Z, Kwon YL, Lechtman E, Pignol JP, Reilly RM. Molecularly targeted gold nanoparticles enhance the radiation response of breast cancer cells and tumor xenografts to X-radiation. Breast Cancer Res Treat. (2013) 137:81–91. doi: 10.1007/s10549-012-2338-4 PubMed DOI
Zhang X, Zhang C, Cheng M, Zhang Y, Wang W, Yuan Z. Dual pH-responsive “charge-reversal like” gold nanoparticles to enhance tumor retention for chemo-radiotherapy. Nano Res. (2019) 12:2815–26. doi: 10.1007/s12274-019-2518-1 DOI
Chen T, Su L, Ge X, Zhang W, Li Q, Zhang X, et al. . Dual activated NIR-II fluorescence and photoacoustic imaging-guided cancer chemo-radiotherapy using hybrid plasmonic-fluorescent assemblies. Nano Res. (2020) 13:3268–77. doi: 10.1007/s12274-020-3000-9 DOI
Shi M, Paquette B, Thippayamontri T, Gendron L, Guerin B, Sanche L. Increased radiosensitivity of colorectal tumors with intra-tumoral injection of low dose of gold nanoparticles. Int J Nanomedicine. (2016) 11:5323–33. doi: 10.2147/IJN.S97541, PMID: PubMed DOI PMC
Jia T-T, Yang G, Mo S-J, Wang ZY, Li BJ, Ma W, et al. . Atomically precise gold-Levonorgestrel nanocluster as a Radiosensitizer for enhanced Cancer therapy. ACS Nano. (2019) 13:8320–8. doi: 10.1021/acsnano.9b03767, PMID: PubMed DOI
Wang X, Niu X, Zhang X, Zhang Z, Gao X, Wang W, et al. . Construction of an AuHQ nano-sensitizer for enhanced radiotherapy efficacy through remolding tumor vasculature. J Mater Chem B. (2021) 9:4365–79. doi: 10.1039/D1TB00515D, PMID: PubMed DOI
Li M, Lin L, Guo T, Wu Y, Lin J, Liu Y, et al. . Curcumin administered in combination with Glu-GNPs induces Radiosensitivity in transplanted tumor MDA-MB-231-luc cells in nude mice. Biomed Res Int. (2021) 2021:1–11. doi: 10.1155/2021/9262453 PubMed DOI PMC
Jia T-T, Li B-J, Yang G, Hua Y, Liu JQ, Ma W, et al. . Enantiomeric alkynyl-protected Au10 clusters with chirality-dependent radiotherapy enhancing effects. Nano Today. (2021) 39:101222. doi: 10.1016/j.nantod.2021.101222 DOI
Xu X, Chong Y, Liu X, Fu H, Yu C, Huang J, et al. . Multifunctional nanotheranostic gold nanocages for photoacoustic imaging guided radio/photodynamic/photothermal synergistic therapy. Acta Biomater. (2019) 84:328–38. doi: 10.1016/j.actbio.2018.11.043, PMID: PubMed DOI
Hua S, He J, Zhang F, Yu J, Zhang W, Gao L, et al. . Multistage-responsive clustered nanosystem to improve tumor accumulation and penetration for photothermal/enhanced radiation synergistic therapy. Biomaterials. (2021) 268:120590. doi: 10.1016/j.biomaterials.2020.120590, PMID: PubMed DOI
Zhang X-D, Luo Z, Chen J, Shen X, Song S, Sun Y, et al. . Ultrasmall Au10−12(SG)10−12 Nanomolecules for high tumor specificity and Cancer radiotherapy. Adv Mater. (2014) 26:4565–8. doi: 10.1002/adma.201400866, PMID: PubMed DOI
Zhang X-D, Luo Z, Chen J, Song S, Yuan X, Shen X, et al. . Ultrasmall glutathione-protected gold nanoclusters as next generation radiotherapy sensitizers with high tumor uptake and high renal clearance. Sci Rep. (2015) 5:8669. doi: 10.1038/srep08669, PMID: PubMed DOI PMC
Liang G, Jin X, Zhang S, Xing D. RGD peptide-modified fluorescent gold nanoclusters as highly efficient tumor-targeted radiotherapy sensitizers. Biomaterials. (2017) 144:95–104. doi: 10.1016/j.biomaterials.2017.08.017, PMID: PubMed DOI
Dong C-Y, Hong S, Zheng D-W, Huang QX, Liu FS, Zhong ZL, et al. . Multifunctionalized gold sub-nanometer particles for sensitizing radiotherapy against glioblastoma. Small. (2021) 17:e2006582. doi: 10.1002/smll.202006582, PMID: PubMed DOI
Zhang X, Chen X, Jiang Y-W, Ma N, Xia LY, Cheng X, et al. . Glutathione-depleting gold nanoclusters for enhanced Cancer radiotherapy through synergistic external and internal regulations. ACS Appl Mater Interfaces. (2018) 10:10601–6. doi: 10.1021/acsami.8b00207, PMID: PubMed DOI
Luo D, Wang X, Zeng S, Ramamurthy G, Burda C, Basilion JP. Targeted gold nanocluster-enhanced radiotherapy of prostate Cancer. Small. (2019) 15:e1900968. doi: 10.1002/smll.201900968, PMID: PubMed DOI PMC
Nicol JR, Harrison E, O'Neill SM, Dixon D, McCarthy HO, Coulter JA. Unraveling the cell-type dependent radiosensitizing effects of gold through the development of a multifunctional gold nanoparticle. Nanomedicine. (2018) 14:439–49. doi: 10.1016/j.nano.2017.11.019, PMID: PubMed DOI
Ma N, Liu P, He N, Gu N, Wu FG, Chen Z. Action of gold Nanospikes-based Nanoradiosensitizers: cellular internalization, radiotherapy, and autophagy. ACS Appl Mater Interfaces. (2017) 9:31526–42. doi: 10.1021/acsami.7b09599, PMID: PubMed DOI
Liu S, Li H, Xia L, Xu P, Ding Y, Huo D, et al. . Anti-RhoJ antibody functionalized au@I nanoparticles as CT-guided tumor vessel-targeting radiosensitizers in patient-derived tumor xenograft model. Biomaterials. (2017) 141:1–12. doi: 10.1016/j.biomaterials.2017.06.036, PMID: PubMed DOI
Gal O, Betzer O, Rousso-Noori L, Sadan T, Motiei M, Nikitin M, et al. . Antibody delivery into the brain by Radiosensitizer nanoparticles for targeted glioblastoma therapy. J Nanotheranostics. (2022) 3:177–88. doi: 10.3390/jnt3040012, PMID: PubMed DOI PMC
Wolfe T, Chatterjee D, Lee J, Grant JD, Bhattarai S, Tailor R, et al. . Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo. Nanomedicine. (2015) 11:1277–83. doi: 10.1016/j.nano.2014.12.016, PMID: PubMed DOI PMC
Ghahremani F, Kefayat A, Shahbazi-Gahrouei D, Motaghi H, Mehrgardi MA, Haghjooy-Javanmard S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine. (2018) 13:2563–78. doi: 10.2217/nnm-2018-0180, PMID: PubMed DOI
Kefayat A, Ghahremani F, Motaghi H, Amouheidari A. Ultra-small but ultra-effective: folic acid-targeted gold nanoclusters for enhancement of intracranial glioma tumors’ radiation therapy efficacy. Nanomedicine. (2019) 16:173–84. doi: 10.1016/j.nano.2018.12.007 PubMed DOI
Cheng X, Sun R, Xia H, Ding J, Yin L, Chai Z, et al. . Light-triggered crosslinking of gold nanoparticles for remarkably improved radiation therapy and computed tomography imaging of tumors. Nanomedicine. (2019) 14:2941–55. doi: 10.2217/nnm-2019-0015, PMID: PubMed DOI
Ding J, Mao Q, Zhao M, Gao Y, Wang A, Ye S, et al. . Protein sulfenic acid-mediated anchoring of gold nanoparticles for enhanced CT imaging and radiotherapy of tumors in vivo. Nanoscale. (2020) 12:22963–9. doi: 10.1039/D0NR06440H, PMID: PubMed DOI
Masood R, Roy I, Zu S, Hochstim C, Yong KT, Law WC, et al. . Gold nanorod-sphingosine kinase siRNA nanocomplexes: a novel therapeutic tool for potent radiosensitization of head and neck cancer. Integr Biol. (2012) 4:132–41. doi: 10.1039/C1IB00060H, PMID: PubMed DOI
Yang C, Gao Y, Fan Y, Cao L, Li J, Ge Y, et al. . Dual-mode endogenous and exogenous sensitization of tumor radiotherapy through antifouling dendrimer-entrapped gold nanoparticles. Theranostics. (2021) 11:1721–31. doi: 10.7150/thno.54930, PMID: PubMed DOI PMC
Zhao N, Yang Z, Li B, Meng J, Shi Z, Li P, et al. . RGD-conjugated mesoporous silica-encapsulated gold nanorods enhance the sensitization of triplenegative breast cancer to megavoltage radiation therapy. Int J Nanomedicine. (2016) 11:5595–610. doi: 10.2147/IJN.S104034, PMID: PubMed DOI PMC
Chiang C-S, Shih I-J, Shueng P-W, Kao M, Zhang LW, Chen SF, et al. . Tumor cell-targeting radiotherapy in the treatment of glioblastoma multiforme using linear accelerators. Acta Biomater. (2021) 125:300–11. doi: 10.1016/j.actbio.2021.02.019 PubMed DOI
Wang C, Wu L, Yuan H, Yu H, Xu J, Chen S, et al. . A powerful antitumor “trident”: the combination of radio-, immuno- and anti-angiogenesis therapy based on mesoporous silica single coated gold nanoparticles. J Mater Chem B. (2023) 11:879–89. doi: 10.1039/D2TB02046G, PMID: PubMed DOI
Soetaert F, Korangath P, Serantes D, Fiering S, Ivkov R. Cancer therapy with iron oxide nanoparticles: agents of thermal and immune therapies. Adv Drug Deliv Rev. (2020) 163-164:65–83. doi: 10.1016/j.addr.2020.06.025 PubMed DOI PMC
McQuade C, al Zaki A, Desai Y, Vido M, Sakhuja T, Cheng Z, et al. . A multifunctional nanoplatform for imaging, radiotherapy, and the prediction of therapeutic response. Small. (2015) 11:834–43. doi: 10.1002/smll.201401927, PMID: PubMed DOI PMC
Chen J, Li M, Yi X, Zhao Q, Chen L, Yang C, et al. . Synergistic effect of Thermo-radiotherapy using au@FeS Core–Shell nanoparticles as multifunctional therapeutic Nanoagents. Part Part Syst Charact. (2017) 34:1600330. doi: 10.1002/ppsc.201600330 DOI
Nosrati H, Baghdadchi Y, Abbasi R, Barsbay M, Ghaffarlou M, Abhari F, et al. . Iron oxide and gold bimetallic radiosensitizers for synchronous tumor chemoradiation therapy in 4T1 breast cancer murine model. J Mater Chem B. (2021) 9:4510–22. doi: 10.1039/D0TB02561E PubMed DOI
Hua Y, Wang Y, Kang X, Xu F, Han Z, Zhang C, et al. . A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J Nanobiotechnol. (2021) 19:438. doi: 10.1186/s12951-021-01191-x, PMID: PubMed DOI PMC
Chang Y, He L, Li Z, Zeng L, Song Z, Li P, et al. . Designing Core-Shell gold and selenium nanocomposites for Cancer Radiochemotherapy. ACS Nano. (2017) 11:4848–58. doi: 10.1021/acsnano.7b01346, PMID: PubMed DOI
Huang Q, Zhang S, Zhang H, Han Y, Liu H, Ren F, et al. . Boosting the Radiosensitizing and Photothermal performance of Cu2-xSe nanocrystals for synergetic Radiophotothermal therapy of Orthotopic breast Cancer. ACS Nano. (2019) 13:1342–53. doi: 10.1021/acsnano.8b06795 PubMed DOI
Yi X, Chen L, Zhong X, Gao R, Qian Y, Wu F, et al. . Core–shell au@MnO2 nanoparticles for enhanced radiotherapy via improving the tumor oxygenation. Nano Res. (2016) 9:3267–78. doi: 10.1007/s12274-016-1205-8 DOI
Chen J, Chen Q, Liang C, Yang Z, Zhang L, Yi X, et al. . Albumin-templated biomineralizing growth of composite nanoparticles as smart nano-theranostics for enhanced radiotherapy of tumors. Nanoscale. (2017) 9:14826–35. doi: 10.1039/C7NR05316A, PMID: PubMed DOI
Lin X, Zhu R, Hong Z, Zhang X, Chen S, Song J, et al. . GSH-responsive Radiosensitizers with deep penetration ability for multimodal imaging-guided synergistic radio-Chemodynamic Cancer therapy. Adv Funct Mater. (2021) 31:2101278. doi: 10.1002/adfm.202101278 DOI
Li M, Zhao Q, Yi X, Zhong X, Song G, Chai Z, et al. . Au@MnS@ZnS Core/Shell/Shell nanoparticles for magnetic resonance imaging and enhanced Cancer radiation therapy. ACS Appl Mater Interfaces. (2016) 8:9557–64. doi: 10.1021/acsami.5b11588, PMID: PubMed DOI
Yang S, Han G, Chen Q, Yu L, Wang P, Zhang Q, et al. . Au-Pt nanoparticle formulation as a radiosensitizer for radiotherapy with dual effects. Int J Nanomedicine. (2021) 16:239–48. doi: 10.2147/IJN.S287523, PMID: PubMed DOI PMC
Cheng K, Sano M, Jenkins CH, Zhang G, Vernekohl D, Zhao W, et al. . Synergistically enhancing the therapeutic effect of radiation therapy with radiation Activatable and reactive oxygen species-releasing nanostructures. ACS Nano. (2018) 12:4946–58. doi: 10.1021/acsnano.8b02038, PMID: PubMed DOI
Liu Q, Shi Y, Chong Y, Ge C. Pharmacological ascorbate promotes the tumor Radiosensitization of au@Pd nanoparticles with simultaneous protection of Normal tissues. ACS Appl Bio Mater. (2021) 4:1843–51. doi: 10.1021/acsabm.0c01537 PubMed DOI
Xiang Y, Peng X, Kong X, Tang Z, Quan H. Biocompatible AuPd@PVP core-shell nanoparticles for enhancement of radiosensitivity and photothermal cancer therapy. Colloids Surf A Physicochem Eng Asp. (2020) 594:124652. doi: 10.1016/j.colsurfa.2020.124652 DOI