Putting gluten back on menu - Safety assessment of polyphenol-rich wheat varieties in Celiac Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39712908
PubMed Central
PMC11659743
DOI
10.2903/j.efsa.2024.e221115
PII: EFS2E221115
Knihovny.cz E-zdroje
- Klíčová slova
- Celiac Disease, gut homeostasis, pigmented wheat grains, wheat Phenolics,
- Publikační typ
- časopisecké články MeSH
This study provides a comprehensive proteomic and metabolomic analysis of novel anthocyanin- and carotenoid-rich wheat varieties to assess their immunogenicity in the context of Celiac Disease. Using (semi)-quantitative mass spectrometry, the research found that gliadin expression and peptide release, particularly those containing immunostimulatory γ-gliadin epitopes, vary significantly across different wheat varieties. While non-targeted mass spectrometry provided valuable insights, the study acknowledged potential methodological biases, such limitations of ion current intensity as a measure of peptide abundance. Despite promising results, further research is required to determine the safety and efficacy of coloured wheat varieties for Celiac Disease patients, considering the complex interplay of gluten proteins, food processing, digestion and matrix effects. The ongoing studies hold potential for developing nutritionally beneficial wheat alternatives for Celiac Disease management.
Zobrazit více v PubMed
Abdel‐Aal, E.‐S. M. , Abou‐Arab, A. A. , Gamel, T. H. , Hucl, P. , Young, J. C. , & Rabalski, I. (2008). Fractionation of blue wheat anthocyanin compounds and their contribution to antioxidant properties. Journal of Agricultural and Food Chemistry, 56(23), 11171–11177. 10.1021/jf802168c PubMed DOI
Abdel‐Aal, E.‐S. M. , Hucl, P. , Shipp, J. , & Rabalski, I. (2016). Compositional differences in anthocyanins from blue‐ and purple‐grained spring wheat grown in four environments in Central Saskatchewan. Cereal Chemistry, 93(1), 32–38. 10.1094/CCHEM-03-15-0058-R DOI
Aguilera, J. M. (2019). The food matrix: Implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition, 59(22), 3612–3629. 10.1080/10408398.2018.1502743 PubMed DOI
Andrén Aronsson, C. , Lee, H. S. , Koletzko, S. , Uusitalo, U. , Yang, J. , Virtanen, S. M. , Liu, E. , Lernmark, Å. , Norris, J. M. , & Agardh, D. (2016). Effects of gluten intake on risk of celiac disease: A case‐control study on a Swedish birth cohort. Clinical Gastroenterology and Hepatology, 14(3), 403–409.e403. 10.1016/j.cgh.2015.09.030 PubMed DOI PMC
Awika, J. M. (2011). Major cereal grains production and use around the world. In Advances in cereal science: Implications to food processing and health promotion (Vol. 1089, pp. 1–13). American Chemical Society. 10.1021/bk-2011-1089.ch001 DOI
Brodkorb, A. , Egger, L. , Alminger, M. , Alvito, P. , Assunção, R. , Ballance, S. , Bohn, T. , Bourlieu‐Lacanal, C. , Boutrou, R. , Carrière, F. , Clemente, A. , Corredig, M. , Dupont, D. , Dufour, C. , Edwards, C. , Golding, M. , Karakaya, S. , Kirkhus, B. , Le Feunteun, S. , … Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. 10.1038/s41596-018-0119-1 PubMed DOI
Camarca, A. , Anderson, R. P. , Mamone, G. , Fierro, O. , Facchiano, A. , Costantini, S. , Zanzi, D. , Sidney, J. , Auricchio, S. , Sette, A. , Troncone, R. , & Gianfrani, C. (2009). Intestinal T cell responses to gluten peptides are largely heterogeneous: Implications for a peptide‐based therapy in celiac disease. Journal of Immunology, 182(7), 4158–4166. 10.4049/jimmunol.0803181 PubMed DOI PMC
Camarca, A. , Auricchio, R. , Picascia, S. , Fierro, O. , Maglio, M. , Miele, E. , Malamisura, B. , Greco, L. , Troncone, R. , & Gianfrani, C. (2017). Gliadin‐reactive T cells in Italian children from preventCD cohort at high risk of celiac disease. Pediatric Allergy and Immunology, 28(4), 362–369. 10.1111/pai.12720 PubMed DOI
Cappelli, A. , & Cini, E. (2021). Challenges and opportunities in wheat flour, pasta, bread, and bakery product production chains: A systematic review of innovations and improvement strategies to increase sustainability, productivity, and product quality. Sustainability, 13(5), 2608 https://www.mdpi.com/2071‐1050/13/5/2608
Cebolla, Á. , Moreno, M. D. L. , Coto, L. , & Sousa, C. (2018). Gluten immunogenic peptides as standard for the evaluation of potential harmful prolamin content in food and human specimen. Nutrients, 10(12), 1927 https://www.mdpi.com/2072‐6643/10/12/1927 PubMed PMC
da Silva, S. , Pérez‐Gregorio, R. , Mateus, N. , Freitas, V. , & Dias, R. (2023). Evidence of increased gluten‐induced perturbations in the nucleophilic tone and detoxifying defences of intestinal epithelial cells impaired by gastric disfunction. Food Research International, 173, 113317. 10.1016/j.foodres.2023.113317 PubMed DOI
Dias, R. , da Silva, S. , Monteiro, B. , Pérez‐Gregorio, R. , Mateus, N. , Gianfrani, C. , Barone, M. V. , Martinek, P. , & Freitas, V. (2024). Mass spectrometry‐based quantification of immunostimulatory gliadin proteins and peptides in coloured wheat varieties: Implications for celiac disease. Food Research International, 178, 114008. 10.1016/j.foodres.2024.114008 PubMed DOI
Dias, R. , Pereira, C. B. , Pérez‐Gregorio, R. , Mateus, N. , & Freitas, V. (2021). Recent advances on dietary polyphenol's potential roles in celiac disease. Trends in Food Science & Technology, 107, 213–225. 10.1016/j.tifs.2020.10.033 DOI
Efremova, T. T. , Morozov, S. V. , Chernyak, E. I. , & Chumanova, E. V. (2023). Combining the genes of blue aleurone and purple pericarp in the genotype of spring bread wheat Saratovskaya 29 to increase anthocyanins in grain. Journal of Cereal Science, 109, 103616. 10.1016/j.jcs.2022.103616 DOI
Erenstein, O. , Jaleta, M. , Mottaleb, K. A. , Sonder, K. , Donovan, J. , & Braun, H.‐J. (2022). Global trends in wheat production, consumption and trade. In Reynolds M. P. & Braun H.‐J. (Eds.), Wheat improvement: Food security in a changing climate (pp. 47–66). Springer International Publishing. 10.1007/978-3-030-90673-3_4 DOI
Ficco, D. B. M. , De Simone, V. , Colecchia, S. A. , Pecorella, I. , Platani, C. , Nigro, F. , Finocchiaro, F. , Papa, R. , & De Vita, P. (2014). Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. Durum) wheats. Journal of Agricultural and Food Chemistry, 62(34), 8686–8695. 10.1021/jf5003683 PubMed DOI
Furone, F. , Bellomo, C. , Carpinelli, M. , Nicoletti, M. , Hewa‐Munasinghege, F. N. , Mordaa, M. , Mandile, R. , Barone, M. V. , & Nanayakkara, M. (2023). The protective role of lactobacillus rhamnosus GG postbiotic on the alteration of autophagy and inflammation pathways induced by gliadin in intestinal models. Frontiers in Medicine, 10, 1085578. 10.3389/fmed.2023.1085578 PubMed DOI PMC
Garg, M. , Kaur, S. , Sharma, A. , Kumari, A. , Tiwari, V. , Sharma, S. , Kapoor, P. , Sheoran, B. , Goyal, A. , & Krishania, M. (2022). Rising demand for healthy foods‐anthocyanin biofortified colored wheat is a new Research Trend. Frontiers in Nutrition, 9. 10.3389/fnut.2022.878221 PubMed DOI PMC
Lachman, J. , Martinek, P. , Kotíková, Z. , Orsák, M. , & Šulc, M. (2017). Genetics and chemistry of pigments in wheat grain—A review. Journal of Cereal Science, 74, 145–154. 10.1016/j.jcs.2017.02.007 DOI
Paznocht, L. , Burešová, B. , Kotíková, Z. , & Martinek, P. (2021). Carotenoid content of extruded and puffed products made of colored‐grain wheats. Food Chemistry, 340, 127951. 10.1016/j.foodchem.2020.127951 PubMed DOI
Pisapia, L. , Camarca, A. , Picascia, S. , Bassi, V. , Barba, P. , Del Pozzo, G. , & Gianfrani, C. (2016). HLA‐DQ2.5 genes associated with celiac disease risk are preferentially expressed with respect to non‐predisposing HLA genes: Implication for anti‐gluten T cell response. Journal of Autoimmunity, 70, 63–72. 10.1016/j.jaut.2016.03.016 PubMed DOI
Reynolds, A. N. , Akerman, A. P. , & Mann, J. (2020). Dietary fibre and whole grains in diabetes management: Systematic review and meta‐analyses. PLoS Medicine, 17(3), e1003053. 10.1371/journal.pmed.1003053 PubMed DOI PMC
Sabença, C. , Ribeiro, M. , Sousa, T. D. , Poeta, P. , Bagulho, A. S. , & Igrejas, G. (2021). Wheat/gluten‐related disorders and gluten‐free diet misconceptions: A review. Food, 10(8), 1765. https://www.mdpi.com/2304‐8158/10/8/1765 PubMed PMC
Saini, P. , Kumar, N. , Kumar, S. , Mwaurah, P. W. , Panghal, A. , Attkan, A. K. , Singh, V. K. , Garg, M. K. , & Singh, V. (2021). Bioactive compounds, nutritional benefits and food applications of colored wheat: A comprehensive review. Critical Reviews in Food Science and Nutrition, 61(19), 3197–3210. 10.1080/10408398.2020.1793727 PubMed DOI
Shewry, P. R. , & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4(3), 178–202. 10.1002/fes3.64 PubMed DOI PMC
Størdal, K. , White, R. A. , & Eggesbø, M. (2013). Early feeding and risk of celiac disease in a prospective birth cohort. Pediatrics, 132(5), e1202–e1209. 10.1542/peds.2013-1752 PubMed DOI PMC
Zhang, B. , Zhao, Q. , Guo, W. , Bao, W. , & Wang, X. (2018). Association of whole grain intake with all‐cause, cardiovascular, and cancer mortality: A systematic review and dose–response meta‐analysis from prospective cohort studies. European Journal of Clinical Nutrition, 72(1), 57–65. 10.1038/ejcn.2017.149 PubMed DOI