Methane emissions from the riverine sandy wetlands on the Mongolia Plateau
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
31971484
National Natural Science Foundation of China
41930643
National Natural Science Foundation of China
32271669
National Natural Science Foundation of China
LM2023048
Ministry of Education, Youth and Sports of CR within the CzeCOS program
PubMed
39725800
DOI
10.1007/s10661-024-13488-z
PII: 10.1007/s10661-024-13488-z
Knihovny.cz E-zdroje
- Klíčová slova
- CH4 flux, Gene sequencing, In situ measurement, Small wetland, Water flow/level,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- methan * analýza MeSH
- mokřady * MeSH
- monitorování životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Mongolsko MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- methan * MeSH
Methane (CH4) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH4 processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH4 emissions and their influencing mechanisms. Annual CH4 emissions were observed at 8.7 mg m-2 h-1 from the flowing water wetlands during November 2019 - October 2021, approximately 80% and 20% of which were emitted during the growing and non-growing seasons, respectively. In particular, CH4 emissions during the thawing period contributed < 5% to the annual total, contrary to the traditional idea that thawing plays an important role in annual CH4 emissions in boreal peatlands. CH4 emissions were significantly higher in the wetlands dominated by plant species than in that dominated by water body during the growing seasons; therefore, plant-mediated CH4 transport was explained as a favorable pathway for CH4 emissions from sandy soils to the atmosphere. Gene sequencing revealed differences in the phylogenies and taxonomies of methanogenic archaea and methanotrophs between the flowing and static water wetlands, suggesting that flowing water should bring oxygen and nutrients to microbial habitats and potentially affect the production, oxidation, and diffusion of CH4 in sandy wetlands.
Zobrazit více v PubMed
Anthony, K. W., Daanen, R., Anthony, P., von Deimling, T. S., Ping, C. L., Chanton, J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9, 679–682. DOI
Audeta, J., Johansena, J. R., Andersena, P. M., Baattrup-Pedersena, A., Brask-Jensena, K. M., Elsgaardb, L., Kjaergaardb, C., Larsena, S. E., & Hoffmanna, C. C. (2013). Methane emissions in Danish riparian wetlands: Ecosystem comparison and pursuit of vegetation indexes as predictive tools. Ecological Indicators, 34, 548–559. DOI
Blanc-Betes, E., Welker, J. M., Sturchio, N. C., Cnanton, J. P., & Gonzalez-Meler, M. A. (2016). Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Global Change Biology, 22, 2818–2833. https://doi.org/10.1111/gcb.13242 DOI
Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K. C., Rawlins, M. A., Riley, W. J., … Kaplan, J. O. (2015). WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321–3349. https://doi.org/10.5194/bg-12-3321-2015 DOI
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. L. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325–1346. https://doi.org/10.1111/gcb.12131 DOI
Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., & Zickfeld, K. (2021). Global carbon and other biogeochemical cycles and feedbacks. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yeleki, O., Yu, R., & Zhou, B. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816. https://doi.org/10.1017/9781009157896.007
Cheng, L., Zheng, Z. Z., Wang, C., & Zhang, H. (2016). Recent Advances in Methanogens. Microbiology China, 43, 1143–1164.
Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., & Hartley, I. P. (2017). Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Climate Change, 7, 507–511. DOI
Cowardin, L. M., & Golet, F. C. (1995). US fish and wildlife service 1979 wetland classification: A review. Vegetatio, 118, 139–152. DOI
Cui, J. F., Han, S. J., Zhang, X. M., Han, X. G., & Wang, Z. P. (2022). Temporal–spatial variability of dissolved carbon in the tributary streams of the lower Yangtze River basin. Water, 14, 4057. DOI
Deng, Y. C., Liu, Y. Q., Dumont, M., & Conrad, R. (2017). Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microbial Ecololgy, 73, 101–110. DOI
Downing, J. A. (2010). Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica, 29, 9–23. DOI
Dridi, B., Fardeau, M. L., Ollivier, B., Raoult, D., & Drancourt, M. (2012). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 62, 1902–1907. DOI
Dumont, M. G., & Murrell, J. C. (2005). Community-level analysis: Key genes of aerobic methane oxidation. Methods in Enzymology, 397, 413–427. https://doi.org/10.1016/s0076-6879(05)97025-0 DOI
Garcia, J. L., Patel, B. K. C., & Ollivier, B. (2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6, 205–226. DOI
Grünfeld, S., & Brix, H. (1999). Methanogenesis and methane emissions: Effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany, 64, 63–75. DOI
Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60, 439–471. DOI
Hou, L. Y., Wang, Z. P., Wang, J. M., Wang, B., Zhou, S. B., & Li, L. H. (2012). Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma, 189–190, 415–422. DOI
Jammet, M., Crill, P., Dengel, S., & Friborg, T. (2015). Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. Journal of Geophysical Research: Biogeosciences, 120, 2289–2305. https://doi.org/10.1002/2015JG003137 DOI
Jeffrey, L. C., Maher, D. T., Johnston, S. G., Kelaher, B. P., Steven, A., & Tait, D. R. (2019). Wetland methane emissions dominated by plant-mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnology and Oceanography, 64, 1895–1912. DOI
Joabsson, A., Christensen, T. R., & Wallén, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution, 14, 385–388. DOI
King, J. Y., Reeburgh, W. S., & Regli, S. K. (1998). Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment. Journal of Geophysical Research, 103, 29083–29092. DOI
Langer, M., Westermann, S., Anthony, K. W., Wischnewski, K., & Boike, J. (2015). Frozen ponds: Production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta. Biogeosciences, 12, 977–990. DOI
Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37, 25–50. DOI
Li, H. L., Zhang, X. M., Deng, F. D., Han, X. G., Xiao, C. W., Han, S. J., & Wang, Z. P. (2020). Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees, 34, 243–254. DOI
Liu, G. S. (1996). Soil physical and chemical analysis & description of soil profiles. China Standard Press.
Luton, P. E., Wayne, J. M., Sharp, R. J., & Riley, P. W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148, 3521–3530. DOI
Martins, P. D., Hoyt, D. W., Bansal, S., Mills, C. T., Tfaily, M., Tangen, B. A., Finocchiaro, R. G., Johnston, M. D., Mcadams, B. C., Solensky, M. J., Smith, G. J., Chin, Y. P., & Wilkins, M. J. (2017). Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Global Change Biology, 23, 3107–3120. https://doi.org/10.1111/gcb.13633 DOI
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H., Mondav, R., Crill, P. M., Chanton, J. P., Rich, V., Tyson, G. W., & Saleska, S. R. (2014). Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 478–481. DOI
Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S., & Lal, R. (2022). Soil inorganic carbon as a potential sink in carbon storage in dryland soils - a review. Agriculture, 12, 1256. DOI
Normile, D. (2007). Getting at the roots of killer dust storms. Science, 317, 314–316. DOI
Reyna-Bowen, L., Vera-Montenegro, L., & Reyna, L. (2019). Soil-organic-carbon concentration and storage under different land uses in the Carrizal-Chone Valley in Ecuador. Applied Sciences, 9, 45. https://doi.org/10.3390/app9010045 DOI
Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S. D., Song, C. L., Melack, J., Raymond, P. A., Duarte, C. M., & Allen, G. H. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14, 225–230. DOI
SAS Institute Inc. (2018). SAS/STAT® 15.1 user’s guide. SAS Institute Inc.
Saunois, M., Stavert, A. R., Poulter, B., et al. (2020). The global methane budget 2000–2017. Earth System Science Data, 12, 1561–1623. DOI
Schimel, J. (2004). Playing scales in the methane cycle: From microbial ecology to the globe. PNAS, 101, 12400–12401. DOI
Ström, L., Ekberg, A., Mastepanov, M., & Christensen, T. R. (2003). The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology, 9, 1185–1192. DOI
Tao, S. L., Fang, J. Y., Zhao, X., Zhao, S. Q., Shen, H. H., Hu, H. F., Tang, Z. Y., Wang, Z. H., & Guo, Q. H. (2015). Rapid loss of lakes on the Mongolian Plateau. PNAS, 112, 2281–2286. https://doi.org/10.1073/pnas.1411748112
Taylor, M. A., Celis, G., Ledman, J. D., Bracho, R., & Schuur, E. A. G. (2018). Methane efflux measured by eddy covariance in Alaskan upland tundra undergoing permafrost degradation. Journal of Geophysical Research: Biogeosciences, 123, 2695–2710. https://doi.org/10.1029/2018JG004444 DOI
Thomas, K. L., Benstead, J., Davies, K. L., & Lloyd, D. (1996). Role of wetland plants in the diurnal control of CH DOI
van Huissteden, J., Berrittella, C., Parmentier, F. J. W., Mi, Y., Maximov, T. C., & Dolman, A. J. (2011). Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Climmate Change, 1, 119–123. https://doi.org/10.1038/nclimate1101 DOI
Vroom, R. J. E., van den Berg, M., Pangala, S. R., van der Scheer, O. E., & Sorrell, B. K. (2022). Physiological processes affecting methane transport by wetland vegetation – A review. Aquatic Botany, 182, 103547. DOI
Waldo, N. B., Hunt, B. K., Fadely, E. C., Moran, J. J., & Neumann, R. B. (2019). Plant root exudates increase methane emissions through direct and indirect pathways. Biogeochemistry, 145, 213–234. DOI
Wang, Z. P., & Han, X. G. (2005). Diurnal variation in methane emissions in relation to plants and environmental variables in the Mongolia marshes. Atmospheric Environment, 39, 6295–6305. DOI
Wang, Z. P., & Ineson, P. (2003). Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N. Soil Biology & Biochemistry, 35, 427–433. DOI
Wang, Z. P., Han, X. G., Li, L. H., Chen, Q. S., Duan, Y., & Cheng, W. X. (2005). Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research: Atmosphere, 110, D13304. https://doi.org/10.1029/2004JD005548 DOI
Wang, Z. P., Song, Y., Gulledge, J., Yu, Q., Liu, H. S., & Han, X. G. (2009). China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43, 2148–2153. DOI
Wang, Z. P., Han, X. G., Chang, S. X., Wang, B., Yu, Q., Hou, L. Y., & Li, L. H. (2013). Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. CATENA, 109, 110–117. DOI
Wang, Z. P., Gu, Q., Deng, F. D., Huang, J. H., Megonigal, J. P., Yu, Q., Lü, X. T., Li, L. H., Chang, S., Zhang, Y. H., Feng, J. C., & Han, X. G. (2016). Methane emissions from the trunks of living trees on upland soils. New Phytologist, 211, 429–439. DOI
Wang, Z. P., Han, S. J., Li, H. L., Deng, F. D., Zheng, Y. H., Liu, H. F., & Han, X. G. (2017). Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research: Biogeosciences, 122, 2479–2489. DOI
Wik, M., Crill, P. M., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 1307–1321. https://doi.org/10.1002/jgrg.20103 DOI
Zhang, X. Y., Hu, Y. F., Zhuang, D. F., Qi, Y. Q., & Ma, X. (2009). NDVI spatial pattern and its differentiation on the Mongolian Plateau. Journal of Geographical Sciences, 19, 405. https://doi.org/10.1007/s11442-009-0403-7 DOI
Zhao, J. B., Peichl, M., & Nilsson, M. B. (2016). Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. Global Change Biology, 22, 750–762. https://doi.org/10.1111/gcb.13119 DOI