Methane emissions from the riverine sandy wetlands on the Mongolia Plateau

. 2024 Dec 26 ; 197 (1) : 105. [epub] 20241226

Jazyk angličtina Země Nizozemsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39725800

Grantová podpora
31971484 National Natural Science Foundation of China
41930643 National Natural Science Foundation of China
32271669 National Natural Science Foundation of China
LM2023048 Ministry of Education, Youth and Sports of CR within the CzeCOS program

Odkazy

PubMed 39725800
DOI 10.1007/s10661-024-13488-z
PII: 10.1007/s10661-024-13488-z
Knihovny.cz E-zdroje

Methane (CH4) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH4 processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH4 emissions and their influencing mechanisms. Annual CH4 emissions were observed at 8.7 mg m-2 h-1 from the flowing water wetlands during November 2019 - October 2021, approximately 80% and 20% of which were emitted during the growing and non-growing seasons, respectively. In particular, CH4 emissions during the thawing period contributed < 5% to the annual total, contrary to the traditional idea that thawing plays an important role in annual CH4 emissions in boreal peatlands. CH4 emissions were significantly higher in the wetlands dominated by plant species than in that dominated by water body during the growing seasons; therefore, plant-mediated CH4 transport was explained as a favorable pathway for CH4 emissions from sandy soils to the atmosphere. Gene sequencing revealed differences in the phylogenies and taxonomies of methanogenic archaea and methanotrophs between the flowing and static water wetlands, suggesting that flowing water should bring oxygen and nutrients to microbial habitats and potentially affect the production, oxidation, and diffusion of CH4 in sandy wetlands.

Zobrazit více v PubMed

Anthony, K. W., Daanen, R., Anthony, P., von Deimling, T. S., Ping, C. L., Chanton, J. P., & Grosse, G. (2016). Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9, 679–682. DOI

Audeta, J., Johansena, J. R., Andersena, P. M., Baattrup-Pedersena, A., Brask-Jensena, K. M., Elsgaardb, L., Kjaergaardb, C., Larsena, S. E., & Hoffmanna, C. C. (2013). Methane emissions in Danish riparian wetlands: Ecosystem comparison and pursuit of vegetation indexes as predictive tools. Ecological Indicators, 34, 548–559. DOI

Blanc-Betes, E., Welker, J. M., Sturchio, N. C., Cnanton, J. P., & Gonzalez-Meler, M. A. (2016). Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra. Global Change Biology, 22, 2818–2833. https://doi.org/10.1111/gcb.13242 DOI

Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K. C., Rawlins, M. A., Riley, W. J., … Kaplan, J. O. (2015). WETCHIMP-WSL: Intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 12, 3321–3349. https://doi.org/10.5194/bg-12-3321-2015 DOI

Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. L. (2013). Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology, 19, 1325–1346. https://doi.org/10.1111/gcb.12131 DOI

Canadell, J. G., Monteiro, P. M. S., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., & Zickfeld, K. (2021). Global carbon and other biogeochemical cycles and feedbacks. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yeleki, O., Yu, R., & Zhou, B. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 673–816. https://doi.org/10.1017/9781009157896.007

Cheng, L., Zheng, Z. Z., Wang, C., & Zhang, H. (2016). Recent Advances in Methanogens. Microbiology China, 43, 1143–1164.

Cooper, M. D. A., Estop-Aragonés, C., Fisher, J. P., Thierry, A., Garnett, M. H., Charman, D. J., Murton, J. B., Phoenix, G. K., Treharne, R., Kokelj, S. V., Wolfe, S. A., Lewkowicz, A. G., Williams, M., & Hartley, I. P. (2017). Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Climate Change, 7, 507–511. DOI

Cowardin, L. M., & Golet, F. C. (1995). US fish and wildlife service 1979 wetland classification: A review. Vegetatio, 118, 139–152. DOI

Cui, J. F., Han, S. J., Zhang, X. M., Han, X. G., & Wang, Z. P. (2022). Temporal–spatial variability of dissolved carbon in the tributary streams of the lower Yangtze River basin. Water, 14, 4057. DOI

Deng, Y. C., Liu, Y. Q., Dumont, M., & Conrad, R. (2017). Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau. Microbial Ecololgy, 73, 101–110. DOI

Downing, J. A. (2010). Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica, 29, 9–23. DOI

Dridi, B., Fardeau, M. L., Ollivier, B., Raoult, D., & Drancourt, M. (2012). Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 62, 1902–1907. DOI

Dumont, M. G., & Murrell, J. C. (2005). Community-level analysis: Key genes of aerobic methane oxidation. Methods in Enzymology, 397, 413–427. https://doi.org/10.1016/s0076-6879(05)97025-0 DOI

Garcia, J. L., Patel, B. K. C., & Ollivier, B. (2000). Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe, 6, 205–226. DOI

Grünfeld, S., & Brix, H. (1999). Methanogenesis and methane emissions: Effects of water table, substrate type and presence of Phragmites australis. Aquatic Botany, 64, 63–75. DOI

Hanson, R. S., & Hanson, T. E. (1996). Methanotrophic bacteria. Microbiological Reviews, 60, 439–471. DOI

Hou, L. Y., Wang, Z. P., Wang, J. M., Wang, B., Zhou, S. B., & Li, L. H. (2012). Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma, 189–190, 415–422. DOI

Jammet, M., Crill, P., Dengel, S., & Friborg, T. (2015). Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance. Journal of Geophysical Research: Biogeosciences, 120, 2289–2305. https://doi.org/10.1002/2015JG003137 DOI

Jeffrey, L. C., Maher, D. T., Johnston, S. G., Kelaher, B. P., Steven, A., & Tait, D. R. (2019). Wetland methane emissions dominated by plant-mediated fluxes: Contrasting emissions pathways and seasons within a shallow freshwater subtropical wetland. Limnology and Oceanography, 64, 1895–1912. DOI

Joabsson, A., Christensen, T. R., & Wallén, B. (1999). Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology & Evolution, 14, 385–388. DOI

King, J. Y., Reeburgh, W. S., & Regli, S. K. (1998). Methane emission and transport by arctic sedges in Alaska: Results of a vegetation removal experiment. Journal of Geophysical Research, 103, 29083–29092. DOI

Langer, M., Westermann, S., Anthony, K. W., Wischnewski, K., & Boike, J. (2015). Frozen ponds: Production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta. Biogeosciences, 12, 977–990. DOI

Le Mer, J., & Roger, P. (2001). Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 37, 25–50. DOI

Li, H. L., Zhang, X. M., Deng, F. D., Han, X. G., Xiao, C. W., Han, S. J., & Wang, Z. P. (2020). Microbial methane production is affected by secondary metabolites in the heartwood of living trees in upland forests. Trees, 34, 243–254. DOI

Liu, G. S. (1996). Soil physical and chemical analysis & description of soil profiles. China Standard Press.

Luton, P. E., Wayne, J. M., Sharp, R. J., & Riley, P. W. (2002). The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology, 148, 3521–3530. DOI

Martins, P. D., Hoyt, D. W., Bansal, S., Mills, C. T., Tfaily, M., Tangen, B. A., Finocchiaro, R. G., Johnston, M. D., Mcadams, B. C., Solensky, M. J., Smith, G. J., Chin, Y. P., & Wilkins, M. J. (2017). Abundant carbon substrates drive extremely high sulfate reduction rates and methane fluxes in Prairie Pothole Wetlands. Global Change Biology, 23, 3107–3120. https://doi.org/10.1111/gcb.13633 DOI

McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H., Mondav, R., Crill, P. M., Chanton, J. P., Rich, V., Tyson, G. W., & Saleska, S. R. (2014). Methane dynamics regulated by microbial community response to permafrost thaw. Nature, 514, 478–481. DOI

Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S., & Lal, R. (2022). Soil inorganic carbon as a potential sink in carbon storage in dryland soils - a review. Agriculture, 12, 1256. DOI

Normile, D. (2007). Getting at the roots of killer dust storms. Science, 317, 314–316. DOI

Reyna-Bowen, L., Vera-Montenegro, L., & Reyna, L. (2019). Soil-organic-carbon concentration and storage under different land uses in the Carrizal-Chone Valley in Ecuador. Applied Sciences, 9, 45. https://doi.org/10.3390/app9010045 DOI

Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S. D., Song, C. L., Melack, J., Raymond, P. A., Duarte, C. M., & Allen, G. H. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources. Nature Geoscience, 14, 225–230. DOI

SAS Institute Inc. (2018). SAS/STAT® 15.1 user’s guide. SAS Institute Inc.

Saunois, M., Stavert, A. R., Poulter, B., et al. (2020). The global methane budget 2000–2017. Earth System Science Data, 12, 1561–1623. DOI

Schimel, J. (2004). Playing scales in the methane cycle: From microbial ecology to the globe. PNAS, 101, 12400–12401. DOI

Ström, L., Ekberg, A., Mastepanov, M., & Christensen, T. R. (2003). The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology, 9, 1185–1192. DOI

Tao, S. L., Fang, J. Y., Zhao, X., Zhao, S. Q., Shen, H. H., Hu, H. F., Tang, Z. Y., Wang, Z. H., & Guo, Q. H. (2015). Rapid loss of lakes on the Mongolian Plateau. PNAS, 112, 2281–2286. https://doi.org/10.1073/pnas.1411748112

Taylor, M. A., Celis, G., Ledman, J. D., Bracho, R., & Schuur, E. A. G. (2018). Methane efflux measured by eddy covariance in Alaskan upland tundra undergoing permafrost degradation. Journal of Geophysical Research: Biogeosciences, 123, 2695–2710. https://doi.org/10.1029/2018JG004444 DOI

Thomas, K. L., Benstead, J., Davies, K. L., & Lloyd, D. (1996). Role of wetland plants in the diurnal control of CH DOI

van Huissteden, J., Berrittella, C., Parmentier, F. J. W., Mi, Y., Maximov, T. C., & Dolman, A. J. (2011). Methane emissions from permafrost thaw lakes limited by lake drainage. Nature Climmate Change, 1, 119–123. https://doi.org/10.1038/nclimate1101 DOI

Vroom, R. J. E., van den Berg, M., Pangala, S. R., van der Scheer, O. E., & Sorrell, B. K. (2022). Physiological processes affecting methane transport by wetland vegetation – A review. Aquatic Botany, 182, 103547. DOI

Waldo, N. B., Hunt, B. K., Fadely, E. C., Moran, J. J., & Neumann, R. B. (2019). Plant root exudates increase methane emissions through direct and indirect pathways. Biogeochemistry, 145, 213–234. DOI

Wang, Z. P., & Han, X. G. (2005). Diurnal variation in methane emissions in relation to plants and environmental variables in the Mongolia marshes. Atmospheric Environment, 39, 6295–6305. DOI

Wang, Z. P., & Ineson, P. (2003). Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N. Soil Biology & Biochemistry, 35, 427–433. DOI

Wang, Z. P., Han, X. G., Li, L. H., Chen, Q. S., Duan, Y., & Cheng, W. X. (2005). Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research: Atmosphere, 110, D13304. https://doi.org/10.1029/2004JD005548 DOI

Wang, Z. P., Song, Y., Gulledge, J., Yu, Q., Liu, H. S., & Han, X. G. (2009). China’s grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 43, 2148–2153. DOI

Wang, Z. P., Han, X. G., Chang, S. X., Wang, B., Yu, Q., Hou, L. Y., & Li, L. H. (2013). Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. CATENA, 109, 110–117. DOI

Wang, Z. P., Gu, Q., Deng, F. D., Huang, J. H., Megonigal, J. P., Yu, Q., Lü, X. T., Li, L. H., Chang, S., Zhang, Y. H., Feng, J. C., & Han, X. G. (2016). Methane emissions from the trunks of living trees on upland soils. New Phytologist, 211, 429–439. DOI

Wang, Z. P., Han, S. J., Li, H. L., Deng, F. D., Zheng, Y. H., Liu, H. F., & Han, X. G. (2017). Methane production explained largely by water content in the heartwood of living trees in upland forests. Journal of Geophysical Research: Biogeosciences, 122, 2479–2489. DOI

Wik, M., Crill, P. M., Varner, R. K., & Bastviken, D. (2013). Multiyear measurements of ebullitive methane flux from three subarctic lakes. Journal of Geophysical Research: Biogeosciences, 118, 1307–1321. https://doi.org/10.1002/jgrg.20103 DOI

Zhang, X. Y., Hu, Y. F., Zhuang, D. F., Qi, Y. Q., & Ma, X. (2009). NDVI spatial pattern and its differentiation on the Mongolian Plateau. Journal of Geographical Sciences, 19, 405. https://doi.org/10.1007/s11442-009-0403-7 DOI

Zhao, J. B., Peichl, M., & Nilsson, M. B. (2016). Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. Global Change Biology, 22, 750–762. https://doi.org/10.1111/gcb.13119 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...