Optimizing active recovery strategies for finger flexor fatigue

. 2024 ; 6 () : 1480205. [epub] 20241212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39726774

INTRODUCTION: Active recovery (AR) is used during exercise training; however, it is unclear whether the AR should involve the whole body, only the upper extremities, or only the lower extremities when aiming to maintain localized upper body performance. Therefore, this study aimed to evaluate the impact of different AR strategies on repeated intermittent finger flexor performance leading to exhaustion. METHODS: A crossover trial involving a familiarization session and three laboratory visits, each including three exhaustive intermittent isometric tests at 60% of finger flexor maximal voluntary contraction separated by 22 min of randomly assigned AR: walking, intermittent hanging, and climbing. RESULTS: The impulse (Nꞏs) significantly decreased from the first to third trials after walking (-18.4%, P = 0.002, d = 0.78), climbing (-29.5%, P < 0.001, d = 1.48), and hanging (-27.2%, P < 0.001, d = 1.22). In the third trial, the impulse from the intermittent test was significantly higher after walking (21,253 ± 5,650 Nꞏs) than after hanging (18,618 ± 5,174 Nꞏs, P = 0.013, d = 0.49) and after climbing (18,508 ± 4,435 Nꞏs, P = 0.009, d = 0.54). CONCLUSIONS: The results show that easy climbing or intermittent isolated forearm contractions should not be used as AR strategies to maintain subsequent performance in comparison to walking, indicating that using the same muscle group for AR should be avoided between exhaustive isometric contractions.

Zobrazit více v PubMed

Fryer S, Stoner L, Scarrott C, Lucero A, Witter T, Love R, et al. Forearm oxygenation and blood flow kinetics during a sustained contraction in multiple ability groups of rock climbers. J Sports Sci. (2015) 33(5):518–26. 10.1080/02640414.2014.949828 PubMed DOI

España-Romero V, Porcel FBO, Artero EG, Jiménez-Pavón D, Sainz AG, Garzón MJC, et al. Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers. Eur J Appl Physiol. (2009) 107(5):517–25. 10.1007/s00421-009-1155-x PubMed DOI

Michailov M. Workload characteristics, performance limiting factors and methods for strength and endurance training in rock climbing. Medicina Sportiva. (2014) 18(3):97–106.

Miranda-Fuentes C, Guisado-Requena IM, Delgado-Floody P, Arias-Poblete L, Perez-Castilla A, Jerez-Mayorga D, et al. Reliability of low-cost near-infrared spectroscopy in the determination of muscular oxygen saturation and hemoglobin concentration during rest, isometric and dynamic strength activity. Int J Environ Res Public Health. (2020) 17(23):8824. 10.3390/ijerph17238824 PubMed DOI PMC

Place N, Yamada T, Bruton JD, Westerblad H. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol. (2010) 110(1):1–15. 10.1007/s00421-010-1480-0 PubMed DOI

Enoka RM, Duchateau J. Muscle fatigue: what, why and how it influences muscle function. J Physiol London. (2008) 586(1):11–23. 10.1113/jphysiol.2007.139477 PubMed DOI PMC

Al-Mulla MR, Sepulveda F, Colley M. A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors. (2011) 11(4):3545–94. 10.3390/s110403545 PubMed DOI PMC

Coffey V, Leveritt M, Gill N. Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. J Sci Med Sport. (2004) 7(1):1–10. 10.1016/S1440-2440(04)80038-0 PubMed DOI

Toubekis AG, Tsolaki A, Smilios I, Douda HT, Kourtesis T, Tokmakidis SP. Swimming performance after passive and active recovery of various durations. Int J Sports Physiol Perform. (2008) 3(3):375–86. 10.1123/ijspp.3.3.375 PubMed DOI

Dorado C, Sanchis-Moysi J, Calbet JAL. Effects of recovery mode on performance, O-2 uptake, and O-2 deficit during high-intensity intermittent exercise. Can J Appl Physiol. (2004) 29(3):227–44. 10.1139/h04-016 PubMed DOI

Ortiz RO, Elder AJS, Elder CL, Dawes JJ. A systematic review on the effectiveness of active recovery interventions on athletic performance of professional-, collegiate-, and competitive-level adult athletes. J Strength Cond Res. (2019) 33(8):2275–87. 10.1519/JSC.0000000000002589 PubMed DOI

Draper N, Bird EL, Coleman I, Hodgson C. Effects of active recovery on lactate concentration, heart rate and RPE in climbing. J Sports Sci Med. (2006) 5(1):97–105. PubMed PMC

Heyman E, De Geus B, Mertens I, Meeusen R. Effects of four recovery methods on repeated maximal rock climbing performance. Med Sci Sports Exerc. (2009) 41(6):1303–10. 10.1249/MSS.0b013e318195107d PubMed DOI

Toubekis AG, Smilios I, Bogdanis GC, Mavridis G, Tokmakidis SP. Effect of different intensities of active recovery on sprint swimming performance. Appl Physiol Nutr Metab. (2006) 31(6):709–16. 10.1139/h06-075 PubMed DOI

Greenwood JD, Moses GE, Bernardino FM, Gaesser GA, Weltman A. Intensity of exercise recovery, blood lactate disappearance, and subsequent swimming performance. J Sports Sci. (2008) 26(1):29–34. 10.1080/02640410701287263 PubMed DOI

Toubekis AG, Adam GV, Douda HT, Antoniou PD, Douroundos II, Tokmakidis SP. Repeated sprint swimming performance after low- or high-intensity active and passive recoveries. J Strength Cond Res. (2011) 25(1):109–16. 10.1519/JSC.0b013e3181b22a9a PubMed DOI

Toubekis AG, Douda HT, Tokmakidis SP. Influence of different rest intervals during active or passive recovery on repeated sprint swimming performance. Eur J Appl Physiol. (2005) 93(5-6):694–700. 10.1007/s00421-004-1244-9 PubMed DOI

Valenzuela PL, De la Villa P, Ferragut C. Effect of two types of active recovery on fatigue and climbing performance. J Sports Sci Med. (2015) 14(4):769–75. PubMed PMC

Mika A, Oleksy L, Kielnar R, Wodka-Natkaniec E, Twardowska M, Kaminski K, et al. Comparison of two different modes of active recovery on muscles performance after fatiguing exercise in mountain canoeist and football players. PLoS One. (2016) 11(10):e0164216. 10.1371/journal.pone.0164216 PubMed DOI PMC

Fujita Y, Koizumi K, Sukeno S, Manabe M, Nomura J. Active recovery effects by previously inactive muscles on 40-s exhaustive cycling. J Sports Sci. (2009) 27(11):1145–51. 10.1080/02640410903229279 PubMed DOI

Thiriet P, Gozal D, Wouassi D, Oumarou T, Gelas H, Lacour JR. The effect of various recovery modalities on subsequent performance, in consecutive supramaximal exercise. J Sports Med Phys Fitness. (1993) 33(2):118–29. PubMed

Baker SJ, King N. Lactic acid recovery profiles following exhaustive arm exercise on a canoeing ergometer. Br J Sports Med. (1991) 25(3):165–7. 10.1136/bjsm.25.3.165 PubMed DOI PMC

Watts PB, Daggett M, Gallagher P, Wilkins B. Metabolic response during sport rock climbing and the effects of active versus passive recovery. Int J Sports Med. (2000) 21(3):185–90. 10.1055/s-2000-302 PubMed DOI

Koizumi K, Fujita Y, Muramatsu S, Manabe M, Ito M, Nomura J. Active recovery effects on local oxygenation level during intensive cycling bouts. J Sports Sci. (2011) 29(9):919–26. 10.1080/02640414.2011.572990 PubMed DOI

Fairchild TJ, Armstrong AA, Rao A, Liu H, Lawrence S, Fournier PA. Glycogen synthesis in muscle fibers during active recovery from intense exercise. Med Sci Sports Exercise. (2003) 35(4):595–602. 10.1249/01.MSS.0000058436.46584.8E PubMed DOI

Izzicupo P, Di Baldassarre A, Ghinassi B, Reichert FF, Kokubun E, Nakamura FY. Can off-training physical behaviors influence recovery in athletes? A scoping review. Front Physiol. (2019) 10:448. 10.3389/fphys.2019.00448 PubMed DOI PMC

Franchini E, Bertuzzi RCD, Takito MY, Kiss M. Effects of recovery type after a judo match on blood lactate and performance in specific and non-specific judo tasks. Eur J Appl Physiol. (2009) 107(4):377–83. 10.1007/s00421-009-1134-2 PubMed DOI

Bogdanis GC, Nevill ME, Lakomy HKA, Graham CM, Louis G. Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol. (1996) 74(5):461–9. 10.1007/BF02337727 PubMed DOI

Michailov M, Baláš J, Tanev SK, Andonov HS, Kodejška J, Brown L. Reliability and validity of finger strength and endurance measurements in rock climbing. Res Q Exerc Sport. (2018) 89(2):246–54. 10.1080/02701367.2018.1441484 PubMed DOI

Winkler M, Künzell S, Augste C. Competitive performance predictors in speed climbing, bouldering, and lead climbing. J Sports Sci. (2023) 41(8):736–46. 10.1080/02640414.2023.2239598 PubMed DOI

Baláš J, Gajdošík J, Giles D, Fryer S, Krupková D, Brtník T, et al. Isolated finger flexor vs. exhaustive whole-body climbing tests? How to assess endurance in sport climbers? Eur J Appl Physiol. (2021) 121(5):1337–48. 10.1007/s00421-021-04595-7 PubMed DOI

Giles D, Hartley C, Maslen H, Hadley J, Taylor N, Torr O, et al. An all-out test to determine finger flexor critical force in rock climbers. Int J Sports Physiol Perform. (2020) 16:942–9. 10.1123/ijspp.2020-0637 PubMed DOI

Draper N, Giles D, Schöffl V, Fuss FK, Watts PB, Wolf P, et al. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: international rock climbing research association position statement. Sports Technol. (2016) 8(3-4):88–94. 10.1080/19346182.2015.1107081 DOI

Baláš J, Kodejška J, Krupková D, Giles D. Males benefit more from cold water immersion during repeated handgrip contractions than females despite similar oxygen kinetics. J Physiol Sci. (2020) 70(1):1–11. 10.1186/s12576-020-00732-7 PubMed DOI PMC

Schweizer A, Hudek R. Kinetics of crimp and slope grip in rock climbing. J Appl Biomech. (2011) 27(2):116–21. 10.1123/jab.27.2.116 PubMed DOI

McClean ZJ, MacDougall KB, Fletcher JR, Aboodarda SJ, Macintosh BR. Test-retest reliability of a 4-minute all-out critical force test in rock climbers. Int J Exerc Sci. (2023) 16(4):912–23. PubMed PMC

Fryer S, Giles D, Palomino IG, Puerta AD, España-Romero V. Hemodynamic and cardiorespiratory predictors of sport rock climbing performance. J Strength Cond Res. (2018) 32(12):3534–41. 10.1519/JSC.0000000000001860 PubMed DOI

Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol. (2019) 126(5):1360–76. 10.1152/japplphysiol.00166.2018 PubMed DOI

Feldmann A, Lehmann R, Wittmann F, Wolf P, Baláš J, Erlacher D. Acute effect of high-intensity climbing on performance and muscle oxygenation in elite climbers. J Sci Sport Exercise. (2021) 4(2):145–55. 10.1007/s42978-021-00139-9 DOI

Kirby BS, Clark DA, Bradley EM, Wilkins BW. The balance of muscle oxygen supply and demand reveals critical metabolic rate and predicts time to exhaustion. J Appl Physiol. (2021) 130(6):1915–27. 10.1152/japplphysiol.00058.2021 PubMed DOI

Gilic B, Feldmann A, Vrdoljak D, Sekulic D. Forearm muscle oxygenation and blood volume parameters during sustained contraction performance in youth sport climbers. J Sports Med Phys Fitness. (2023) 63(7):819–27. 10.23736/S0022-4707.23.14806-7 PubMed DOI

Kentta G, Hassinen P. Overtraining and recovery—a conceptual model. Sports Med. (1998) 26(1):1–16. 10.2165/00007256-199826010-00001 PubMed DOI

Feldmann A, Erlacher D. Critical oxygenation: can muscle oxygenation inform us about critical power? Med Hypotheses. (2021) 150:110575. 10.1016/j.mehy.2021.110575 PubMed DOI

Fryer S, Stoner L, Lucero A, Witter T, Scarrott C, Dickson T, et al. Haemodynamic kinetics and intermittent finger flexor performance in rock climbers. Int J Sports Med. (2015) 36(2):137–42. 10.1055/s-0034-1385887 PubMed DOI

Jones B, Hamilton DK, Cooper CE. Muscle oxygen changes following sprint interval cycling training in elite field hockey players. PLoS One. (2015) 10(3):e0120338. 10.1371/journal.pone.0120338 PubMed DOI PMC

Choi D, Cole KJ, Goodpaster BH, Fink WJ, Costill DL. Effect of passive and active recovery on the resynthesis of muscle glycogen. Med Sci Sports Exercise. (1994) 26(8):992–6. 10.1249/00005768-199408000-00010 PubMed DOI

McAinch A, Febbraio MA, Parkin JM, Zhao SA, Tangalakis K, Stojanovska L, et al. Effect of active versus passive recovery on metabolism and performance during subsequent exercise. Int J Sport Nutr Exerc Metab. (2004) 14(2):185–96. 10.1123/ijsnem.14.2.185 PubMed DOI

Spencer M, Bishop D, Dawson B, Goodman C, Duffield R. Metabolism and performance in repeated cycle sprints: active versus passive recovery. Med Sci Sports Exercise. (2006) 38(8):1492–9. 10.1249/01.mss.0000228944.62776.a7 PubMed DOI

Gajdošík J, Baláš J, Krupková D, Psohlavec L, Draper N. Effect of climbing speed on pulmonary oxygen uptake and muscle oxygen saturation dynamics in the finger flexors. Int J Sports Physiol Perform. (2021) 17:176–84. 10.1123/ijspp.2021-0110 PubMed DOI

Kodejška J, Baláš J, Draper N. Effect of cold-water immersion on handgrip performance in rock climbers. Int J Sports Physiol Perform. (2018) 13(8):1097–9. 10.1123/ijspp.2018-0012 PubMed DOI

Phillips K, Noh B, Gage M, Yoon T. The effect of cold ambient temperatures on climbing-specific finger flexor performance. Eur J Sport Sci. (2017) 17(7):885–93. 10.1080/17461391.2017.1328707 PubMed DOI

Baláš J, Kodejška J, Procházková A, Knap R, Tufano JJ. Muscle cooling before and in the middle of a session: there are benefits on subsequent localized endurance performance in a warm environment. J Strength Cond Res. (2024) 38(3):533–9. 10.1519/JSC.0000000000004641 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...