Aero-TiO2 three-dimensional nanoarchitecture for photocatalytic degradation of tetracycline
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
23-PKVV-UM-7
Ministry of Foreign Affairs of the Czech Republic
PNRRIII-C9-2023-I8-161
Romanian Ministry of Research, Innovation and Digitalization
PNRRIII-C9-2023-I8-161
Romanian Ministry of Research, Innovation and Digitalization
PNRRIII-C9-2023-I8-161
Romanian Ministry of Research, Innovation and Digitalization
24.80012.5007.12TC
National Agency for Research and Development of the Republic of Moldova
24.80012.5007.12TC
National Agency for Research and Development of the Republic of Moldova
24.80012.5007.12TC
National Agency for Research and Development of the Republic of Moldova
RP/CPS/2024-28/007
Ministry of Education, Youth and Sports of the Czech Republic
RP/CPS/2024-28/007
Ministry of Education, Youth and Sports of the Czech Republic
RP/CPS/2024-28/007
Ministry of Education, Youth and Sports of the Czech Republic
RP/CPS/2024-28/007
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39732912
PubMed Central
PMC11682283
DOI
10.1038/s41598-024-82574-6
PII: 10.1038/s41598-024-82574-6
Knihovny.cz E-zdroje
- Klíčová slova
- Aeromaterials, Photocatalysis, Tetracycline, Tetrapod, TiO2,
- Publikační typ
- časopisecké články MeSH
One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO2 aeromaterial (aero-TiO2) consisting of hollow microtetrapods with Zn2Ti3O8 inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters. The performance of the aero-TiO2 material was investigated regarding photocatalytic degradation of tetracycline under UV and visible light irradiation. Upon irradiation with a 3.4 mW/cm2 UV source, the tetracycline concentration decreases by about 90% during 150 min, while upon irradiation with a Solar Simulator (87.5 mW/cm2) the concentration of antibiotic decreases by about 75% during 180 min. The experiments conducted under liquid flow conditions over a photocatalyst fixed in a testing cell have demonstrated the proper reusability of the material.
Zobrazit více v PubMed
Samrot, A. V. et al. Sources of antibiotic contamination in wastewater and approaches to their removal—An overview. Sustain.15, (2023).
Liu, Y. et al. Occurrence, fate, and risk assessment of antibiotics in typical pharmaceutical manufactories and receiving water bodies from different regions. PLoS ONE18, e0270945 (2023). PubMed PMC
Antos, J., Piosik, M., Ginter-Kramarczyk, D., Zembrzuska, J. & Kruszelnicka, I. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques. Chemosphere353, 141519 (2024). PubMed
Masar, M. et al. Multifunctional bandgap-reduced ZnO nanocrystals for photocatalysis, self-cleaning, and antibacterial glass surfaces. Colloids Surfaces A Physicochem. Eng. Asp.656, 130447 (2023).
Tran, D. P. H., Pham, M.-T., Bui, X.-T., Wang, Y.-F. & You, S.-J. CeO2 as a photocatalytic material for CO2 conversion: A review. Sol. Energy240, 443–466 (2022).
Ramanathan, G. & Murali, K. R. Photocatalytic activity of SnO2 nanoparticles. J. Appl. Electrochem.52, 849–859 (2022).
Albero, J., Mateo, D. & García, H. Graphene-based materials as efficient photocatalysts for water splitting. Molecules24, (2019). PubMed PMC
Estrada-Flores, S., Martínez-Luévanos, A., Esquivel-Castro, T. A. & Flores-Guia, T. E. Doped Semiconductor Nanomaterials: Applications in Energy and in the Degradation of Organic Compounds BT - Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. in (eds. Kharissova, O. V., Martínez, L. M. T. & Kharisov, B. I.) 1–24 (Springer International Publishing, Cham, 2020). 10.1007/978-3-030-11155-7_138-1.
Chen, D. et al. Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. J. Clean. Prod.268, 121725 (2020).
Ohtani, B. Titania photocatalysis beyond recombination: A critical review. Catalysts3, 942–953 (2013).
Fiordaliso, F., Bigini, P., Salmona, M. & Diomede, L. Toxicological impact of titanium dioxide nanoparticles and food-grade titanium dioxide (E171) on human and environmental health. Environ. Sci. Nano9, 1199–1211 (2022).
Khlyustova, A. et al. Doped TiO2: The effect of doping elements on photocatalytic activity. Mater. Adv.1, 1193–1201 (2020).
Ciobanu, V. et al. Aero-TiO2 prepared on the basis of networks of ZnO tetrapods. Crystals12, (2022).
Lei, J., Li, H., Zhang, J. & Anpo, M. Mixed-Phase TiO2 Nanomaterials as Efficient Photocatalysts. in Low-dimensional and nanostructured materials and devices: properties, synthesis, characterization, modelling and applications (eds. Ünlü, H., Horing, N. J. M. & Dabrowski, J.) 423–460 (Springer International Publishing, Cham, 2016). 10.1007/978-3-319-25340-4_17.
Wang, C., Xu, B.-Q., Wang, X. & Zhao, J. Preparation and photocatalytic activity of ZnO/TiO2/SnO2 mixture. J. Solid State Chem.178, 3500–3506 (2005).
Noman, M. T., Ashraf, M. A. & Ali, A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res.26, 3262–3291 (2019). PubMed
Ciobanu, V. & Plesco, I. TiO2 Nanotubes for photocatalytic degradation of methylene blue. J. Eng. Sci.28, 23–30 (2021).
Enachi, M. et al. Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots. Surf. Eng. Appl. Electrochem.51, 3–8 (2015).
Ion, R. et al. Drug delivery systems based on titania nanotubes and active agents for enhanced osseointegration of bone implants. Curr. Med. Chem.27, 854–902 (2020). PubMed
Enachi, M. et al. Light-induced motion of microengines based on microarrays of TiO2 nanotubes. Small12, 5497–5505 (2016). PubMed
Wolff, N. et al. Advanced hybrid GaN/ZnO nanoarchitectured microtubes for fluorescent micromotors driven by UV light. Small16, 1905141 (2020). PubMed
Porto, S. P. S., Fleury, P. A. & Damen, T. C. Raman spectra of TiO2, MgF2, ZnF2, FeF2, and MnF2. Phys. Rev.154, 522–526 (1967).
Kovačič, Ž, Likozar, B. & Huš, M. Electronic properties of rutile and anatase TiO2 and their effect on CO2 adsorption: A comparison of first principle approaches. Fuel328, 125322 (2022).
Qu, Y. et al. Facile synthesis of porous Zn2Ti3O8 nanorods for photocatalytic overall water splitting. ChemCatChem6, 2258–2262 (2014).
Gallart, M. et al. Temperature dependent photoluminescence of anatase and rutile TiO2 single crystals: Polaron and self-trapped exciton formation. J. Appl. Phys.124, 133104 (2018).
Wu, S., Hu, H., Lin, Y., Zhang, J. & Hu, Y. H. Visible light photocatalytic degradation of tetracycline over TiO2. Chem. Eng. J.382, 122842 (2020).
Li, X., Xiong, J., Huang, J., Feng, Z. & Luo, J. Novel g-C3N4/h′ZnTiO3-a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J. Alloys Compd.774, 768–778 (2019).
Ozturk, B. & Soylu, G. S. P. Promoting role of transition metal oxide on ZnTiO3–TiO2 nanocomposites for the photocatalytic activity under solar light irradiation. Ceram. Int.42, 11184–11192 (2016).
Pantoja-Espinoza, J. C. et al. Comparative study of Zn2Ti3O8 and ZnTiO3 photocatalytic properties for hydrogen production. Catalysts10, (2020).
Sharma, M., Mandal, M. K., Pandey, S., Kumar, R. & Dubey, K. K. Visible-light-driven photocatalytic degradation of tetracycline using heterostructured Cu2O–TiO2 nanotubes, kinetics, and toxicity evaluation of degraded products on cell lines. ACS Omega7, 33572–33586 (2022). PubMed PMC
Wu, S., Li, X., Tian, Y., Lin, Y. & Hu, Y. H. Excellent photocatalytic degradation of tetracycline over black anatase-TiO2 under visible light. Chem. Eng. J.406, 126747 (2021).
Kubiak, A. et al. Microwave-assisted synthesis of a TiO2-CuO heterojunction with enhanced photocatalytic activity against tetracycline. Appl. Surf. Sci.520, 146344 (2020).
Yan, M., Wu, Y. & Liu, X. Photocatalytic nanocomposite membranes for high-efficiency degradation of tetracycline under visible light: An imitated core-shell Au-TiO2-based design. J. Alloys Compd.855, 157548 (2021).
Hasham Firooz, M., Naderi, A., Moradi, M. & Kalantary, R. R. Enhanced tetracycline degradation with TiO2/natural pyrite S-scheme photocatalyst. Sci. Rep.14, 4954 (2024). PubMed PMC
Choi, N. et al. Visible-light-driven photocatalytic degradation of tetracycline using citric acid and lemon juice-derived carbon quantum dots incorporated TiO2 nanocomposites. Sep. Purif. Technol.350, 127836 (2024).
Liu, J. et al. TiO2/p-BC composite photocatalyst for efficient removal of tetracycline from aqueous solutions under simulated sunlight. Catalysts14, (2024).
Deng, F., Zhao, L., Luo, X., Luo, S. & Dionysiou, D. D. Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater. Chem. Eng. J.333, 423–433 (2018).
Ye, Z. et al. Well-dispersed nebula-like ZnO/CeO2@HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem. Eng. J.304, 917–933 (2016).
Gad-Allah, T. A., Ali, M. E. M. & Badawy, M. I. Photocatalytic oxidation of ciprofloxacin under simulated sunlight. J. Hazard. Mater.186, 751–755 (2011). PubMed
Qin, X., Cui, L. & Shao, G. Preparation of ZnO-Zn2TiO4 Sol composite films and its photocatalytic activities. J. Nanomater.2013, 428419 (2013).
Mahajan, J. & Jeevanandam, P. Synthesis of Zn2TiO4@CdS core-shell heteronanostructures by novel thermal decomposition approach for photocatalytic application. ChemistrySelect4, 12580–12591 (2019).
Mishra, Y. K. et al. Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part. Part. Syst. Charact.30, 775–783 (2013).