Production and properties of particleboard and paper from waste poppy straw

. 2025 Jan 02 ; 15 (1) : 339. [epub] 20250102

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39747167
Odkazy

PubMed 39747167
PubMed Central PMC11695947
DOI 10.1038/s41598-024-82733-9
PII: 10.1038/s41598-024-82733-9
Knihovny.cz E-zdroje

Due to the scarcity of wood in some countries, it is necessary to replace it with other raw materials and at the same time use the waste material. The aim of this research is to use poppy waste straw for the efficient conversion of possible lignocellulosic materials - pulps and particleboards. Their suitability for the production of composites is assessed on the basis of selected physical or mechanical properties. Tensile strength index, burst strength index and air permeability by Gurley have been identified as critical properties of pulp made from poppy straw through two delignification methods. The better mechanical properties, i.e., tensile strength index, were achieved at 52.7 N·m/g for the sodium pulp, but the nitrate-alkali method also showed corresponding values at 45.9 N·m/g. Similar parameters to those of bagasse or similar fast-growing plants were achieved in particleboard production. The results of this research are used to evaluate poppy straw as an alternative raw material to produce biocomposites.

Zobrazit více v PubMed

Silva, J. P. A., Carneiro, L. M. & Roberto, I. C. Treatment of rice straw hemicellulosic hydrolysates with advanced oxidative processes: a new and promising detoxification method to improve the bioconversion process. Biotechnol. Biofuels. 6, 1–13. 10.1186/1754-6834-6-23 (2013). PubMed PMC

Saini, J. K., Saini, R. & Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech.5, 337–353. 10.1007/s13205-014-0246-5 (2015). PubMed PMC

Anwar, Z., Gulfraz, M. & Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J. Radiation Res. Appl. Sci.7 (2), 163–173. 10.1016/j.jrras.2014.02.003 (2014).

Paul, S. & Dutta, A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl.130, 164–174. 10.1016/j.resconrec.2017.12.005 (2018).

Brinchi, L., Cotana, F., Fortunati, E. & Kenny, J. M. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym.94 (1), 154–169. 10.1016/j.carbpol.2013.01.033 (2013). PubMed

Rowell, R. M., Young, R. A. & Rowell, J. K. Paper and Composites from agro Based Resources464 (CRC, 1996).

Youngquist, J. A., Krzysik, A. M., Chow, P. & Meimban, R. Properties of composite panels. In Paper and Composites from agro-based Resources, (eds Rowell, R. M., Young, R. A. & Rowell, J. K.) CRC: Boca Raton, USA, 301–336. (1996).

Ndazi, B., Tesha, J. V. & Bisanda, E. T. Some opportunities and challenges of producing bio-composites from non-wood residues. J. Mater. Sci.41, 6984–6990. 10.1007/s10853-006-0216-3 (2006).

Sahin, H. T. & Arslan, M. B. Weathering performance of particleboards manufactured from blends of forest residues with Red pine (Pinus brutia) wood. Maderas Ciencia Y tecnología. 13 (3), 337–346. 10.4067/S0718-221X2011000300009 (2011).

Rials, G. T. & Wolcott, M. P. Physical and mechanical properties of agro-based fibers, In Paper and Composites from agro-based Resources, (eds Rowell, R. M., Young, R. A. & Rowell, J. K.) CRC: Boca Raton, USA, 63–81. (1996).

Arslan, M. & Sahin, H. Properties of particleboards produced from poppy (Papaver somniferum L.) stalks. J. Adv. Biology Biotechnol.6 (2), 1–6. 10.9734/JABB/2016/24977 (2016).

Alma, M. H., Kalaycıoğlu, H., Bektaş, I. & Tutus, A. Properties of cotton carpel-based particleboards. Ind. Crops Prod.22 (2), 141–149. 10.1016/j.indcrop.2004.08.001 (2005).

Batalla, L., Nunez, A. J. & Marcovich, N. E. Particleboards from peanut-shell flour. J. Appl. Polym. Sci.97 (3), 916–923. 10.1002/app.21847 (2005).

Bektas, I., Guler, C., Kalaycioğlu, H., Mengeloglu, F. & Nacar, M. The manufacture of particleboards using sunflower stalks (Helianthus annuus L.) and poplar wood (Populus alba L). J. Compos. Mater.39 (5), 467–473. 10.1177/0021998305047098 (2005).

Jamaludin, M. A., Bahari, S. A., Zakaria, M. N. & Saipolbahri, N. S. Influence of Rice Straw, Bagasse, and their combination on the properties of Binderless Particleboard. J. Korean Wood Sci. Technol.48 (1), 22–31. 10.5658/WOOD.2020.48.1.22 (2020).

Muehl, J. H., Krzysik, A. M., Youngquist, J. A., Chow, P. & Bao, Z. Performance of Hardboards made from Kenaf, In: Kenaf Properties, Processing and Products, (ed Sellers, T.) Mississippi State University: Mississippi, USA, 367–379. (1999).

Ntalos, G. A. & Grigoriou, A. H. Characterization and utilisation of vine prunings as a Wood Substitute for Particleboard Production. Ind. Crops Prod.16 (1), 59–68. 10.1016/S0926-6690(02)00008-0 (2002).

Udhayasankar, R., Karthikeyan, B. & Balaji, A. Comparative mechanical, thermal properties and morphological study of untreated and NaOH-treated coconut shell-reinforced cardanol environmentally friendly green composites. J. Adhes. Sci. Technol.34 (16), 1720–1740. 10.1080/01694243.2020.1727643 (2020).

Balaji, A., Udhayasankar, R., Karthikeyan, B., Swaminathan, J. & Purushothaman, R. Mechanical and thermal characterization of bagasse fiber/coconut shell particle hybrid biocomposites reinforced with cardanol resin. Results Chem.2, 100056. 10.1016/j.rechem.2020.100056 (2020).

Lee, S. H. et al. Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard. Ind. Crops Prod.116, 249–258. 10.1016/j.indcrop.2018.02.050 (2018).

Mohanty, A. K., Misra, M. & Drzal, L. T. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces. 8, 313–343. 10.1163/156855401753255422 (2001).

Wu, G. et al. Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources10 (1), 227–239. 10.15376/biores.10.1.227-239 (2014).

Bardhan, S. K., Gupta, S., Gorman, M. E. & Haider, M. A. Biorenewable chemicals: feedstocks, technologies and the conflict with food production. Renew. Sustain. Energy Rev.51, 506–520. 10.1016/j.rser.2015.06.013 (2015).

Soliman, A. S., Shehata, M. S., Ahmad, F. & Abdel-Atty, M. Evaluation of paper pulp and paper making characteristics produced from different African woody trees grown in Egypt. Res. J. Forestry. 11, 19–27. 10.3923/rjf.2017.19.27 (2017).

Bajpai, P. Biermann’s Handbook of Pulp and Paper: Paper and Board Making576 (Elsevier, 2018).

Vašek, J. et al. New EST-SSR markers for individual genotyping of opium poppy cultivars (Papaver somniferum L). Plants9 (1), 10. 10.3390/plants9010010 (2019). PubMed PMC

Stranská, I., Skalický, M., Novák, J., Matyasová, E. & Hejňák, V. Analysis of selected poppy (Papaver somniferum L.) cultivars: pharmaceutically important alkaloids. Ind. Crops Prod.41 (1), 120–126. 10.1016/j.indcrop.2012.04.018 (2013).

Valizadeh, N. & Arslan, N. Poppy breeding. Türk Bilimsel Derlemeler Dergisi. 6 (2), 86–92 (2013).

Tappi Test Methods. Tappi T 211 om-02. Ash in wood, pulp, Paper and Paperboard: Combustion at 525°C. Tappi Press Atlanta: Georgia, USA, (2007).

Tappi Test Methods. Tappi T 280 wd-06. Acetone Extractives of Wood and Pulp. Tappi Press Atlanta: Georgia, USA, (2015).

Seifert, K. Uber Ein neues Verfahren Zur Schnellbestimmung Der Rein-Cellulose. Das Papier. 10, 301–306 (1956).

Tappi Test Methods. Tappi T 13 wd-74. Lignin in Wood. Tappi Press Atlanta: Georgia, USA, (2015).

Wise, L. E., Murphy, M. & D´Addieco, A. A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J.122 (3), 35–43 (1946).

ČSN ISO 302 (50 0258). Pulps. Determination Kappa Number (in Czech) (Czech Standard Institute: Prague, Czech Republic,, 1993).

ISO 5269-2. Pulps – Preparation of Laboratory Sheets for Physical Testing—Part 2: Rapid-Kothen Method. Sampling and Preparing Wood for Analysis. Technical Association of the Pulp and Paper Industry. International Organization for Standardization: London, UK, 1998. (1998).

ČSN EN ISO 1924-2. (500340). Paper and Board—Determination of Tensile Properties. Czech Standard Institute: Prague, Czech Republic, (2009).

ISO 2758:2014. Paper—Determination of Bursting Strength (Geneve, Switzerland,, 2014).

ISO 5636-5. Paper and Board—Determination of air Permeance (Medium Range)—Part 5: Gurley Method. International Organization for Standardization: Geneve, Switzerland, 2019. (2013).

ČSN EN 311. Particle Boards from wood – Internal Bonding Strength (in Czech) (Czech Standard Institute: Prague, Czech Republic,, 2003).

ČSN 49 0104. Testing the Properties of Growing wood. Method for Determining Water Absorption and Moisture Content (in Czech) (Czech Standard Institute: Prague, Czech Republic,, 1988).

Ateş, S., Deníz, I., Kirci, H., Atík, C. & Okan, O. T. Comparison of pulping and bleaching behaviors of some agricultural residues. Turkish J. Agric. Forestry. 39, 144–153. 10.3906/tar-1403-41 (2015).

Bhardwaj, N. K., Kaur, D., Chaudhry, S., Sharma, M. & Arya, S. Approaches for converting sugarcane trash, a promising agro residue, into pulp and paper using soda pulping and elemental chlorine-free bleaching. J. Clean. Prod.217, 225–233. 10.1016/j.jclepro.2019.01.223 (2019).

Hassan, M., Berglund, L., Hassan, E., Abou-Zeid, R. & Oksman, K. Effect of xylanase pretreatment of rice straw unbleached soda and neutral sulfite pulps on isolation of nanofibers and their properties. Cellulose25, 2939–2953. 10.1007/s10570-018-1779-2 (2018).

Barbash, V., Poyda, V. & Deykun, I. Peracetic acid pulp from annual plants. Cellul. Chem. Technol.45 (9–10), 613–618 (2011).

Mishra, O. P., Tripathi, S. K. & Bhardwaj, N. K. Suitability of corn stalks pulp for improving physical strength properties of agro-residues pulp. Cellul. Chem. Technol.54 (1–2), 65–71. 10.35812/CelluloseChemTechnol.2020.54.07 (2020).

Potůček, F., Rahman, M. & Miklík, J. Displacement washing kraft pulp with various consistency. Cellul. Chem. Technol.54, 943–952. 10.35812/CelluloseChemTechnol.2020.54.91 (2020).

Akbulut, T., Ayrılmış, N., Özden, Ö. & Avcı, E. Potential application of fibrous sludge waste from paper mills in particleboard production. Forestist71 (1), 54–61. 10.5152/forestist.2020.20051 (2021).

Amode, N. S. & Jeetah, P. Paper Production from Mauritian Hemp Fibres. Waste Biomass Valor. 12, 1781–1802. 10.1007/s12649-020-01125-y (2021).

Omer, S. H., Khider, T. O., Elkazi, O. T., Mohieldin, S. D. & Shomeina, S. K. Application of soda-AQ pulping to agricultural waste (okra stalks) from Sudan. BMC Chem. Eng. 1–6. 10.1186/s42480-019-0005-9 (2019).

Ahmadi, M., Latibari, A. J., Faezipour, M. & Hejdazi, S. Neutral sulfite semi-chemical pulping of rapeseed residues. Turkish J. Agric. Forestry. 34, 11–16. 10.3906/tar-0903-19 (2010).

Bosco, M., Mbise, E. & Minja, R. J. A. Production of Paper Pulp using Sisal Fiber Waste from Sisal spinning processes. Tanzan. J. Eng. Technol.41 (2), 151–157. 10.52339/tjet.v41i2.788 (2022).

Kaur, D., Bhardwaj, N. K. & Lohchab, R. K. Prospects of rice straw as a raw material for paper making. Waste Manage.60, 127–139. 10.1016/j.wasman.2016.08.001 (2017). PubMed

Jin, H., Kose, R., Akada, N. & Okayama, T. Relationship between wettability of pulp fibers and tensile strength of paper during recycling. Sci. Rep.12, 1560. 10.1038/s41598-022-05514-2 (2022). PubMed PMC

Danielewicz, D. & Ślusarska, S. Miscanthus×giganteus stalks as a potential non-wood raw material for the pulp and paper industry. Influence of pulping and beating conditions on the fibre and paper properties. Ind. Crops Prod.141, 1117441–1117411. 10.1016/j.indcrop.2019.111744 (2019).

Kasmani, J. E., Samariha, A. & Kiaei, M. Investigation on pulping potential of Iranian rapeseed residue in the paper industrial. World Appl. Sci. J.12, 1996–2001 (2011).

Malik, S., Rana, V., Joshi, G., Gupta, P. K. & Sharma, A. Valorization of wheat Straw for the Paper Industry: pre-extraction of reducing sugars and its Effect on Pulping and Papermaking properties. ACS Omega. 47 (5), 30704–30715. 10.1021/acsomega.0c04883 (2020). PubMed PMC

Ververis, C., Georghiou, K., Christodoulakis, N. S., Santas, P. & Santas, R. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod.19 (3), 245–254. 10.1016/j.indcrop.2003.10.006 (2004).

Goel, K. et al. A potential pulp fibre source. Pulp Paper Can.101 (6), 41–47 (2000).

González, I., Alcalá, M., Arbat, G., Vilaseca, F. & Mutje, P. Suitability of rapeseed chemithermomechanical pulp as raw material in papermaking. BioResources8, 1967–1708 (2013).

Dias, A. C. & Arroja, L. Comparison of methodologies for estimating the carbon footprint – case study of office paper. J. Clean. Prod.24, 30–35. 10.1016/j.jclepro.2011.11.005 (2012).

Dias, A. C., Arroja, L. & Capela, I. Life Cycle Assessment of printing and writing paper produced in Portugal. Int. J. Life Cycle Assess.12, 521–528. 10.1065/lca2006.08.266 (2007).

Gemechu, E. D., Butnar, I., Gomà-Camps, J., Pons, A. & Castells, F. A comparison of the GHG emissions caused by manufacturing tissue paper from virgin pulp or recycled waste paper. Int. J. Life Cycle Assess.18, 1618–1628. 10.1007/s11367-013-0597-x (2013).

Sun, M., Wang, Y. & Shi, L. Environmental performance of straw-based pulp making: a life cycle perspective. Sci. Total Environ.616–617 (753–762). 10.1016/j.scitotenv.2017.10.250 (2018). PubMed

Thoemen, H., Irle, M., Sernek, M. W. B. & Panels An Introduction for Specialists287 (Brunel University, 2010).

Lakshmanan, A. et al. Development of a composite product from fibre yielding crop residues. Ind. Crops Prod.202, 116986. 10.1016/j.indcrop.2023.116986 (2023).

Muruganandam, L., Ranjitha, J., Harshavarrdhan, A. A. & Review Report on Physical and Mechanical properties of particle boards from organic Waste. Int. J. ChemTech Res.9 (1), 64–72 (2016).

Njoku, R. E., Okon, A. E. & Ikpaki, T. C. Effects of variation of particle size and weight fraction on the tensile strength and modulus of periwinkle shell reinforced polyester composite. Nigerian J. Technol.30 (2), 87–93 (2011).

Tezara, C., Siregar, J. P., Moey, L. K. & Wei, L. J. Factors that affect the mechanical properties of kenaf fiber reinforced polymer: a review. J. Mech. Eng. Sci.10 (2), 2159–2175. 10.15282/jmes.10.2.2016.19.0203 (2016).

Lee, S. H. et al. Particleboard from agricultural biomass and recycled wood waste: a review. J. Mater. Res. Technol.20, 4630–4658. 10.1016/j.jmrt.2022.08.166 (2022).

Kariuki, S. W., Wachira, J., Kawira, M. & Murithi, G. Crop residues used as lignocellulose materials for particleboards formulation. Heliyon 6, e05025. (2020). 10.1016/j.heliyon.2020.e05025 PubMed PMC

Mirski, R., Banaszak, A. & Bekhta, P. Selected properties of Formaldehyde-Free polymer-straw boards made from different types of thermoplastics and different kinds of Straw. Materials14, 1216. 10.3390/ma14051216 (2021). PubMed PMC

Pędzik, M., Tomczak, K., Janiszewska-Latterini, D., Tomczak, A. & Rogoziński, T. Management of Forest Residues as a raw material for the production of Particleboards. Forests13, 1933. 10.3390/f13111933 (2022).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...