• This record comes from PubMed

The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro

. 2025 Jan 02 ; 15 (1) : 183. [epub] 20250102

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NU21-05-00482 Ministerstvo Zdravotnictví Ceské Republiky
SVV 260 664 Charles University

Links

PubMed 39747199
PubMed Central PMC11696109
DOI 10.1038/s41598-024-83745-1
PII: 10.1038/s41598-024-83745-1
Knihovny.cz E-resources

Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms. To reflect the wound environment, Tryptic soy broth, RPMI 1640 with and without glucose, and Lubbock medium were supplemented with different amounts of host effector molecules present in human plasma or sheep red blood cells. The study demonstrates that the Lubbock medium provided the most appropriate amount of nutrients regarding the biomass structure and the highest degree of tolerance to selected antimicrobials with the evident contribution of the biofilm matrix. Our results allow the rational employment of nutrition conditions within methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro for preclinical research. Additionally, one of the potential targets of a complex antibiofilm strategy, carbohydrates, was revealed since they are prevailing molecules in the matrices regardless of the cultivation media.

See more in PubMed

World Health Organization. Antimicrobial resistance. (2023). https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance

Singh, S., Singh, S. K., Chowdhury, I. & Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open. Microbiol. J.11, 53–62 (2017). PubMed PMC

Penesyan, A., Paulsen, I. T., Kjelleberg, S. & Gillings, M. R. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes. 7, 80 (2021). PubMed PMC

Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol.28 (8), 668–681 (2020). PubMed

Berlanga, M. & Guerrero, R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb. Cell. Fact.15, 165 (2016). PubMed PMC

Li, X. H. & Lee, J. H. Antibiofilm agents: a new perspective for antimicrobial strategy. J. Microbiol.55 (10), 753–766 (2017). PubMed

Tytgat, H. L. P., Nobrega, F. L., van der Oost, J. & de Vos, W. M. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol.27, 17–25 (2019). PubMed

Anju, V. T. et al. Polymicrobial infections and biofilms: clinical significance and eradication strategies. Antibiot. (Basel). 11 (12), 1731 (2022). PubMed PMC

Rao, Y., Shang, W., Yang, Y., Zhou, R. & Rao, X. Fighting mixed-species microbial biofilms with cold atmospheric plasma. Front. Microbiol.11, 1000 (2020). PubMed PMC

Yuan, L. et al. Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr.60 (13), 2277–2293 (2020). PubMed

Carolus, H., Van Dyck, K. & Van Dijck, P. Candida albicans and Staphylococcus species: a threatening twosome. Front. Microbiol.10, 2162 (2019). PubMed PMC

Kalita, S. et al. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. Roy Soc. Chem.7, 1749–1758 (2017).

Kong, E. F. et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio7 (5), e01365–e01316 (2016). PubMed PMC

Gupta, N., Haque, A., Mukhopadhyay, G., Narayan, R. P. & Prasad, R. Interactions between bacteria and Candida in the burn wound. Burns31 (3), 375–378 (2005). PubMed

Metcalf, D. G. & Bowler, P. G. Biofilm delays wound healing: a review of the evidence. Burns Trauma.1, 5–12 (2013). PubMed PMC

Percival, S. L. Importance of biofilm formation in surgical infection. Br. J. Sur. 104 (2), e85–e94 (2017). PubMed

Guzmán-Soto, I. et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models. iScience24 (5), 102443 (2021). PubMed PMC

Powers, J. H. Antimicrobial drug development – the past, the present, and the future. Clin. Microbiol. Infect.10, 23–31 (2004). PubMed

Zhang, K., Li, X., Yu, C. & Wang, Y. Promising therapeutic strategies against microbial biofilm challenges. Front. Cell. Infect. Microbiol.10, 359 (2020). PubMed PMC

Vyas, H. K. N., Xia, B. & Mai-Prochnow, A. Clinically relevant in vitro biofilm models: a need to mimic and recapitulate the host environment. Biofilm4, 100069 (2022). PubMed PMC

Sun, Y., Dowd, S. E., Smith, E., Rhoads, D. D. & Wolcott, R. D. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair. Regen. 16 (6), 805–813 (2008). PubMed

Diepoltová, A., Konečná, K., Janďourek, O. & Nachtigal, P. Study of the impact of cultivation conditions and peg surface modification on the in vitro biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis in a system analogous to the Calgary biofilm device. J. Med. Microbiol.. 10.1099/jmm.0.001371 (2021). PubMed

Konečná, K., Němečková, I., Diepoltová, A., Vejsová, M. & Janďourek, O. The impact of cultivation media on the in vitro biofilm biomass production of candida Spp. Curr. Microbiol.78 (5), 2104–2111 (2021). PubMed

Stepanović, S. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS115 (8), 891–899 (2007). PubMed

Wu, H., Moser, C., Wang, H. Z., Høiby, N. & Song, Z. J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci.1 7, 1–7 (2015). PubMed PMC

Costa, R. C. et al. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit. Rev. Microbiol.49 (3), 370–390 (2023). PubMed

Zago, C. E. et al. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PloS One, 10(4), e0123206 (2015). PubMed PMC

Lade, H. et al. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med.8 (11), 1853 (2019). PubMed PMC

Leonhard, M., Zatorska, B. & Moser, D. & Schneider-Stickler, B. Growth Media for mixed multispecies oropharyngeal biofilm compositions on silicone. Biomed Res. Int. 8051270 (2019). (2019). PubMed PMC

Pynnonen, M., Stephenson, R. E., Schwartz, K., Hernandez, M. & Boles, B. R. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog7(7), e1002104 (2011). PubMed PMC

Weerasekera, M. M. et al. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem. Inst. Oswaldo Cruz. 111 (11), 697–702 (2016). PubMed PMC

Diban, F. et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int. J. Mol. Sci.24 (2), 1004 (2023). PubMed PMC

Hourigan, L. A. et al. Loss of protein, immunoglobulins, and electrolytes in exudates from negative pressure wound therapy. Nut Clin. Pract.25 (5), 510–516 (2010). PubMed

Cardile, A. P. et al. Human plasma enhances the expression of staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in Vitro. BMC Res. Notes. 7, 457 (2014). PubMed PMC

Halfman, C. Laboratory examination of serous fluids. (2014). http://www.clinbiochemtopics.com/Topics/Fall/SersFlud/

Innes, E., Yiu, H. H. P., McLean, P., Brown, W. & Boyles, M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit. Rev. Toxicol.51 (3), 217–248 (2021). PubMed

Löffler, M. W., Schuster, H., Bühler, S. & Beckert, S. Wound fluid in diabetic foot ulceration: more than just an undefined soup? Int. J. Low Extrem Wounds. 12 (2), 113–129 (2013). PubMed

Metcalf, D. G. et al. Elevated wound fluid pH correlates with increased risk of wound infection. Wound Med.26, (2019).

Trengove, N. J., Langton, S. R. & Stacey, M. C. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair. Regen. 4 (2), 234–239 (1996). PubMed

Jung, P. et al. Candida albicans adhesion to central venous catheimpactImpact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence11, 1453–1465 (2020). PubMed PMC

Nobile, C. J. & Johnson, A. D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol.69, 71–92 (2015). PubMed PMC

Dauros-Singorenko, P., Wiles, S. & Swift, S. Staphylococcus aureus biofilms and their response to a relevant in vivo iron source. Front. Microbiol.11, 509525 (2020). PubMed PMC

Watchaputi, K., Jayasekara, L. A. C. B., Ratanakhanokchai, K. & Soontorngun, N. Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19,20epoxycytochalasin Q in Candida albicans. Sci. Rep.13, 9724 (2023). PubMed PMC

Zolla, L. Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov Today. 13 (23–24), 1042–1051 (2008). PubMed PMC

Batoni, G., Martinez-Pomares, L. & Esin, S. Editorial: Immune response to biofilms. Front. Immunol.12, 696356 (2021). PubMed PMC

Marsh, P. D. & Devine, D. A. How is the development of dental biofilms influenced by the host? J. Clin. Peridontol. 38 (Suppl 11), 28–35 (2011). PubMed

Briški, F. & Vuković Domanovac, M. Environmental microbiology. Phys. Sci. Rev.2 (11), 20160118 (2017).

Waldrop, R., McLaren, A., Calara, F. & McLemore, R. Biofilm growth has a threshold response to glucose in vitro. Clin. Orthop. Relat. Res.472 (11), 3305–3310 (2014). PubMed PMC

Afshar, P., Larijani, L. V. & Rouhanizadeh, H. A comparison of conventional rapid methods in diagnosis of superficial and cutaneous mycoses based on KOH, Chicago sky blue 6B and calcofluor white stains. Iran. J. Microbiol.10 (6), 433–440 (2018). PubMed PMC

Van Ende, M., Wijnants, S. & Van Dijck, P. Sugar sensing and signaling in Candida albicans and Candida Glabrata. Front. Microbiol.10, 99 (2019). PubMed PMC

Rosenberg, M., Azevedo, N. F. & Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep.9 (1), 6483 (2019). PubMed PMC

Harriott, M. M. & Noverr, M. C. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol.19 (11), 557–563 (2011). PubMed PMC

Mishra, S. et al. Therapeutic strategies against biofilm infections. Life (Basel). 13 (1), 172 (2023). PubMed PMC

Liesenborghs, L., Verhamme, P. & Vanassche, T. Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thromb. Haemost. 16 (3), 441–454 (2018). PubMed

Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol.6 (3), 199–210 (2008). PubMed

Christensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol.22 (6), 996–1006 (1985). PubMed PMC

European Committee for Antimicrobial Susceptibility Testing. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect.9 (8), 1–7 (2003). PubMed

European Committee for Antimicrobial Susceptibility Testing. EUCAST definitive document E.DEF 7.3.1. (2017). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...