The appropriate nutrient conditions for methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
NU21-05-00482
Ministerstvo Zdravotnictví Ceské Republiky
SVV 260 664
Charles University
PubMed
39747199
PubMed Central
PMC11696109
DOI
10.1038/s41598-024-83745-1
PII: 10.1038/s41598-024-83745-1
Knihovny.cz E-resources
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms * drug effects growth & development MeSH
- Candida albicans * drug effects physiology MeSH
- Culture Media * pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus * drug effects physiology MeSH
- Microbial Sensitivity Tests MeSH
- Sheep MeSH
- Nutrients metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Culture Media * MeSH
Polymicrobial biofilms, the reason for most chronic wound infections, play a significant role in increasing antibiotic resistance. The in vivo effectiveness of the new anti-biofilm therapy is conditioned by the profound evaluation using appropriate in vitro biofilm models. Since nutrient availability is crucial for in vitro biofilm formation, this study is focused on the impact of four selected cultivation media on the properties of methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilms. To reflect the wound environment, Tryptic soy broth, RPMI 1640 with and without glucose, and Lubbock medium were supplemented with different amounts of host effector molecules present in human plasma or sheep red blood cells. The study demonstrates that the Lubbock medium provided the most appropriate amount of nutrients regarding the biomass structure and the highest degree of tolerance to selected antimicrobials with the evident contribution of the biofilm matrix. Our results allow the rational employment of nutrition conditions within methicillin-resistant Staphylococcus aureus and Candida albicans dual-species biofilm formation in vitro for preclinical research. Additionally, one of the potential targets of a complex antibiofilm strategy, carbohydrates, was revealed since they are prevailing molecules in the matrices regardless of the cultivation media.
See more in PubMed
World Health Organization. Antimicrobial resistance. (2023). https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
Singh, S., Singh, S. K., Chowdhury, I. & Singh, R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open. Microbiol. J.11, 53–62 (2017). PubMed PMC
Penesyan, A., Paulsen, I. T., Kjelleberg, S. & Gillings, M. R. Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms Microbiomes. 7, 80 (2021). PubMed PMC
Karygianni, L., Ren, Z., Koo, H. & Thurnheer, T. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol.28 (8), 668–681 (2020). PubMed
Berlanga, M. & Guerrero, R. Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb. Cell. Fact.15, 165 (2016). PubMed PMC
Li, X. H. & Lee, J. H. Antibiofilm agents: a new perspective for antimicrobial strategy. J. Microbiol.55 (10), 753–766 (2017). PubMed
Tytgat, H. L. P., Nobrega, F. L., van der Oost, J. & de Vos, W. M. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol.27, 17–25 (2019). PubMed
Anju, V. T. et al. Polymicrobial infections and biofilms: clinical significance and eradication strategies. Antibiot. (Basel). 11 (12), 1731 (2022). PubMed PMC
Rao, Y., Shang, W., Yang, Y., Zhou, R. & Rao, X. Fighting mixed-species microbial biofilms with cold atmospheric plasma. Front. Microbiol.11, 1000 (2020). PubMed PMC
Yuan, L. et al. Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr.60 (13), 2277–2293 (2020). PubMed
Carolus, H., Van Dyck, K. & Van Dijck, P. Candida albicans and Staphylococcus species: a threatening twosome. Front. Microbiol.10, 2162 (2019). PubMed PMC
Kalita, S. et al. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. Roy Soc. Chem.7, 1749–1758 (2017).
Kong, E. F. et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix. mBio7 (5), e01365–e01316 (2016). PubMed PMC
Gupta, N., Haque, A., Mukhopadhyay, G., Narayan, R. P. & Prasad, R. Interactions between bacteria and Candida in the burn wound. Burns31 (3), 375–378 (2005). PubMed
Metcalf, D. G. & Bowler, P. G. Biofilm delays wound healing: a review of the evidence. Burns Trauma.1, 5–12 (2013). PubMed PMC
Percival, S. L. Importance of biofilm formation in surgical infection. Br. J. Sur. 104 (2), e85–e94 (2017). PubMed
Guzmán-Soto, I. et al. Mimicking biofilm formation and development: recent progress in in vitro and in vivo biofilm models. iScience24 (5), 102443 (2021). PubMed PMC
Powers, J. H. Antimicrobial drug development – the past, the present, and the future. Clin. Microbiol. Infect.10, 23–31 (2004). PubMed
Zhang, K., Li, X., Yu, C. & Wang, Y. Promising therapeutic strategies against microbial biofilm challenges. Front. Cell. Infect. Microbiol.10, 359 (2020). PubMed PMC
Vyas, H. K. N., Xia, B. & Mai-Prochnow, A. Clinically relevant in vitro biofilm models: a need to mimic and recapitulate the host environment. Biofilm4, 100069 (2022). PubMed PMC
Sun, Y., Dowd, S. E., Smith, E., Rhoads, D. D. & Wolcott, R. D. In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair. Regen. 16 (6), 805–813 (2008). PubMed
Diepoltová, A., Konečná, K., Janďourek, O. & Nachtigal, P. Study of the impact of cultivation conditions and peg surface modification on the in vitro biofilm formation of Staphylococcus aureus and Staphylococcus epidermidis in a system analogous to the Calgary biofilm device. J. Med. Microbiol.. 10.1099/jmm.0.001371 (2021). PubMed
Konečná, K., Němečková, I., Diepoltová, A., Vejsová, M. & Janďourek, O. The impact of cultivation media on the in vitro biofilm biomass production of candida Spp. Curr. Microbiol.78 (5), 2104–2111 (2021). PubMed
Stepanović, S. et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS115 (8), 891–899 (2007). PubMed
Wu, H., Moser, C., Wang, H. Z., Høiby, N. & Song, Z. J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci.1 7, 1–7 (2015). PubMed PMC
Costa, R. C. et al. Polymicrobial biofilms related to dental implant diseases: unravelling the critical role of extracellular biofilm matrix. Crit. Rev. Microbiol.49 (3), 370–390 (2023). PubMed
Zago, C. E. et al. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PloS One, 10(4), e0123206 (2015). PubMed PMC
Lade, H. et al. Biofilm formation by Staphylococcus aureus clinical isolates is differentially affected by glucose and sodium chloride supplemented culture media. J. Clin. Med.8 (11), 1853 (2019). PubMed PMC
Leonhard, M., Zatorska, B. & Moser, D. & Schneider-Stickler, B. Growth Media for mixed multispecies oropharyngeal biofilm compositions on silicone. Biomed Res. Int. 8051270 (2019). (2019). PubMed PMC
Pynnonen, M., Stephenson, R. E., Schwartz, K., Hernandez, M. & Boles, B. R. Hemoglobin promotes Staphylococcus aureus nasal colonization. PLoS Pathog7(7), e1002104 (2011). PubMed PMC
Weerasekera, M. M. et al. Culture media profoundly affect Candida albicans and Candida tropicalis growth, adhesion and biofilm development. Mem. Inst. Oswaldo Cruz. 111 (11), 697–702 (2016). PubMed PMC
Diban, F. et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int. J. Mol. Sci.24 (2), 1004 (2023). PubMed PMC
Hourigan, L. A. et al. Loss of protein, immunoglobulins, and electrolytes in exudates from negative pressure wound therapy. Nut Clin. Pract.25 (5), 510–516 (2010). PubMed
Cardile, A. P. et al. Human plasma enhances the expression of staphylococcal microbial surface components recognizing adhesive matrix molecules promoting biofilm formation and increases antimicrobial tolerance in Vitro. BMC Res. Notes. 7, 457 (2014). PubMed PMC
Halfman, C. Laboratory examination of serous fluids. (2014). http://www.clinbiochemtopics.com/Topics/Fall/SersFlud/
Innes, E., Yiu, H. H. P., McLean, P., Brown, W. & Boyles, M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit. Rev. Toxicol.51 (3), 217–248 (2021). PubMed
Löffler, M. W., Schuster, H., Bühler, S. & Beckert, S. Wound fluid in diabetic foot ulceration: more than just an undefined soup? Int. J. Low Extrem Wounds. 12 (2), 113–129 (2013). PubMed
Metcalf, D. G. et al. Elevated wound fluid pH correlates with increased risk of wound infection. Wound Med.26, (2019).
Trengove, N. J., Langton, S. R. & Stacey, M. C. Biochemical analysis of wound fluid from nonhealing and healing chronic leg ulcers. Wound Repair. Regen. 4 (2), 234–239 (1996). PubMed
Jung, P. et al. Candida albicans adhesion to central venous catheimpactImpact of blood plasma-driven germ tube formation and pathogen-derived adhesins. Virulence11, 1453–1465 (2020). PubMed PMC
Nobile, C. J. & Johnson, A. D. Candida albicans biofilms and human disease. Annu. Rev. Microbiol.69, 71–92 (2015). PubMed PMC
Dauros-Singorenko, P., Wiles, S. & Swift, S. Staphylococcus aureus biofilms and their response to a relevant in vivo iron source. Front. Microbiol.11, 509525 (2020). PubMed PMC
Watchaputi, K., Jayasekara, L. A. C. B., Ratanakhanokchai, K. & Soontorngun, N. Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19,20epoxycytochalasin Q in Candida albicans. Sci. Rep.13, 9724 (2023). PubMed PMC
Zolla, L. Proteomics studies reveal important information on small molecule therapeutics: a case study on plasma proteins. Drug Discov Today. 13 (23–24), 1042–1051 (2008). PubMed PMC
Batoni, G., Martinez-Pomares, L. & Esin, S. Editorial: Immune response to biofilms. Front. Immunol.12, 696356 (2021). PubMed PMC
Marsh, P. D. & Devine, D. A. How is the development of dental biofilms influenced by the host? J. Clin. Peridontol. 38 (Suppl 11), 28–35 (2011). PubMed
Briški, F. & Vuković Domanovac, M. Environmental microbiology. Phys. Sci. Rev.2 (11), 20160118 (2017).
Waldrop, R., McLaren, A., Calara, F. & McLemore, R. Biofilm growth has a threshold response to glucose in vitro. Clin. Orthop. Relat. Res.472 (11), 3305–3310 (2014). PubMed PMC
Afshar, P., Larijani, L. V. & Rouhanizadeh, H. A comparison of conventional rapid methods in diagnosis of superficial and cutaneous mycoses based on KOH, Chicago sky blue 6B and calcofluor white stains. Iran. J. Microbiol.10 (6), 433–440 (2018). PubMed PMC
Van Ende, M., Wijnants, S. & Van Dijck, P. Sugar sensing and signaling in Candida albicans and Candida Glabrata. Front. Microbiol.10, 99 (2019). PubMed PMC
Rosenberg, M., Azevedo, N. F. & Ivask, A. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep.9 (1), 6483 (2019). PubMed PMC
Harriott, M. M. & Noverr, M. C. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol.19 (11), 557–563 (2011). PubMed PMC
Mishra, S. et al. Therapeutic strategies against biofilm infections. Life (Basel). 13 (1), 172 (2023). PubMed PMC
Liesenborghs, L., Verhamme, P. & Vanassche, T. Staphylococcus aureus, master manipulator of the human hemostatic system. J. Thromb. Haemost. 16 (3), 441–454 (2018). PubMed
Stewart, P. S. & Franklin, M. J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol.6 (3), 199–210 (2008). PubMed
Christensen, G. D. et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol.22 (6), 996–1006 (1985). PubMed PMC
European Committee for Antimicrobial Susceptibility Testing. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect.9 (8), 1–7 (2003). PubMed
European Committee for Antimicrobial Susceptibility Testing. EUCAST definitive document E.DEF 7.3.1. (2017). https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/AFST/Files/EUCAST_E_Def_7_3_1_Yeast_testing__definitive.pdf