Muscle activity and lower body kinematics change when performing motor imagery of gait
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39748042
PubMed Central
PMC11697421
DOI
10.1038/s41598-024-84081-0
PII: 10.1038/s41598-024-84081-0
Knihovny.cz E-zdroje
- Klíčová slova
- Acceleration, Angular velocity, Electromyography, Gait, Motor imagery, Muscle activity,
- MeSH
- biomechanika MeSH
- chůze (způsob) * fyziologie MeSH
- dolní končetina fyziologie MeSH
- dospělí MeSH
- elektromyografie * MeSH
- imaginace fyziologie MeSH
- kosterní svaly * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Motor imagery (MI) is a mental simulation of a movement without its actual execution. Our study aimed to assess how MI of two modalities of gait (normal gait and much more posturally challenging slackline gait) affects muscle activity and lower body kinematics. Electromyography (biceps femoris, gastrocnemius medialis, rectus femoris and tibialis anterior muscles) as well as acceleration and angular velocity (shank, thigh and pelvis segments) data were collected in three tasks for both MI modalities of gait (rest, gait imagery before and after the real execution of gait) in quiet bipedal stance in 26 healthy young adults. No significant change was observed in electromyography activity and lower body kinematics when comparing MI tasks of normal gait. A significantly higher acceleration for the lower limb segments in the vertical direction and for the pelvis in the mediolateral and anteroposterior direction and angular velocity for pelvis in the frontal plane were found during MI of slackline gait after its real execution compared to rest. The results show that MI of normal gait does not lead to any significant changes, while MI of slackline gait affects lower body kinematics parameters.
Zobrazit více v PubMed
Decety, J. & Jeannerod, M. Mentally simulated movements in virtual reality: Does Fitt’s law hold in motor imagery?. Behav. Brain Res.72, 127–134. 10.1016/0166-4328(96)00141-6 (1995). PubMed
Lotze, M. & Halsband, U. Motor imagery. J. Physiol. Paris99, 386–395. 10.1016/j.jphysparis.2006.03.012 (2006). PubMed
Ridderinkhof, K. R. & Brass, M. How Kinesthetic Motor Imagery works: A predictive-processing theory of visualization in sports and motor expertise. J. Physiol. Paris109, 53–63. 10.1016/j.jphysparis.2015.02.003 (2015). PubMed
Iseki, K., Hanakawa, T., Shinozaki, J., Nankaku, M. & Fukuyama, H. Neural mechanisms involved in mental imagery and observation of gait. Neuroimage41(3), 1021–1031. 10.1016/j.neuroimage.2008.03.010 (2008). PubMed
Kaneko, N., Yokoyama, H., Masugi, Y., Watanabe, K. & Nakazawa, K. Phase dependent modulation of cortical activity during action observation and motor imagery of walking: An EEG study. Neuroimage225, 117486. 10.1016/j.neuroimage.2020.117486 (2021). PubMed
Miyai, I. et al. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. Neuroimage14(5), 1186–1192. 10.1006/nimg.2001.0905 (2001). PubMed
Hétu, S. et al. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev.37, 930–949. 10.1016/j.neubiorev.2013.03.017 (2013). PubMed
Solodkin, A., Hlustik, P., Chen, E. E. & Small, S. L. Fine modulation in network activation during motor execution and motor imagery. Cereb. Cortex14, 1246–1255. 10.1093/cercor/bhh086 (2004). PubMed
Kami, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature377, 155–158. 10.1038/377155a0 (1995). PubMed
Wriessnegger, S. C., Steyrl, D., Koschutnig, K. & Müller-Putz, G. R. Short time sports exercise boosts motor imagery patterns: Implications of mental practice in rehabilitation programs. Front. Hum. Neurosci.8, 469. 10.3389/fnhum.2014.00469 (2014). PubMed PMC
Kaneko, N., Masugi, Y., Usuda, N., Yokoyama, H. & Nakazawa, K. Modulation of Hoffmann reflex excitability during action observation of walking with and without motor imagery. Neurosci. Lett.684, 218–222. 10.1016/j.neulet.2018.07.041 (2018). PubMed
Malouin, F., Richards, C. L., Jackson, P. L., Dumas, F. & Doyon, J. Brain activations during motor imagery of locomotor-related tasks: A PET study. Hum. Brain Mapp.19(1), 47–62. 10.1002/hbm.10103 (2003). PubMed PMC
Guillot, A. & Collet, C. Construction of the motor imagery integrative model in sport: A review and theoretical investigation of motor imagery use. Int. Rev. Sport Exerc. Psychol.1, 31–44. 10.1080/17509840701823139 (2008).
Guillot, A. et al. Muscular responses during motor imagery as a function of muscle contraction types. Int. J. Psychophysiol.665, 18–27. 10.1016/j.ijpsycho.2007.05.009 (2007). PubMed
Schuster, C. et al. Best practice for motor imagery: A systematic literature review on motor imagery training elements in five different disciplines. BMC Med.9, 75. 10.1186/1741-7015-9-75 (2011). PubMed PMC
Hall, C. R. & Martin, K. A. Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. J. Ment. Imagery21, 143–154 (1997).
Bajaj, S., Butler, A. J., Drake, D. & Dhamala, M. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation. Neuroimage Clin.8, 572–582. 10.1016/j.nicl.2015.06.006 (2015). PubMed PMC
Guillot, A., Lebon, F. & Collet, C. Electromyographic activity during motor imagery. In The Neurophysiological Foundations of Mental and Motor Imagery (eds Guillot, A. & Collet, C.) 83–94 (Oxford University Press, 2010).
Salik Sengul, Y., Kaya, N., Yalcinkaya, G., Kirmizi, M. & Kalemci, O. The effects of the addition of motor imagery to home exercises on pain, disability and psychosocial parameters in patients undergoing lumbar spinal surgery: A randomized controlled trial. Explore (NY)17, 334–339. 10.1016/j.explore.2020.02.001 (2021). PubMed
Zapparoli, L. et al. Motor imagery training speeds up gait recovery and decreases the risk of falls in patients submitted to total knee arthroplasty. Sci. Rep.10, 8917. 10.1038/s41598-020-65820-5 (2020). PubMed PMC
Mateo, S. et al. Improvement of grasping after motor imagery in C6–C7 tetraplegia: A kinematic and MEG pilot study. Restor. Neurol. Neurosci.33, 543–555. 10.3233/RNN-140466 (2015). PubMed
Page, S. J., Levine, P. & Hill, V. Mental practice-triggered electrical stimulation in chronic, moderate, upper-extremity hemiparesis after stroke. Am. J. Occup. Ther.69, 1–8. 10.5014/ajot.2015.014902 (2015). PubMed PMC
Ruffino, C., Papaxanthis, C. & Lebon, F. Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience341, 61–78. 10.1016/j.neuroscience.2016.11.023 (2017). PubMed
Guerra, Z. F., Lucchetti, A. L. G. & Lucchetti, G. Motor imagery training after stroke: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. Phys. Ther.41, 205–214. 10.1097/NPT.0000000000000200 (2017). PubMed
Blumen, H. M. & Verghese, J. Motor imagery of walking and walking while talking: A pilot randomized-controlled trial protocol for older adults. Neurodegener. Dis. Manag.7(6), 353–363. 10.2217/nmt-2017-0024 (2017). PubMed PMC
Yoo, P. E. et al. Distinct neural correlates underlie inhibitory mechanisms of motor inhibition and motor imagery restraint. Front. Behav. Neurosci.14, 77. 10.3389/fnbeh.2020.00077 (2020). PubMed PMC
Lemos, T., Rodrigues, E. C. & Vargas, C. D. Motor imagery modulation of postural sway is accompanied by changes in the EMG-COP association. Neurosci. Lett.577, 101–105. 10.1016/j.neulet.2014.06.019 (2014). PubMed
Rodrigues, E. C. et al. Kinesthetic motor imagery modulates body sway. Neuroscience169(2), 743–750. 10.1016/j.neuroscience.2010.04.081 (2010). PubMed
Kolářová, B., Krobot, A., Polehlová, K., Hluštík, P. & Richards, J. Effect of gait imagery tasks on lower limb muscle activity with respect to body posture. Percept. Mot. Skills122(2), 411–431. 10.1177/0031512516640377 (2016). PubMed
Kolářová, B. et al. How posture and previous sensorimotor experience influence muscle activity during gait imagery in young healthy individuals. Brain Sci.13(11), 1605. 10.3390/brainsci13111605 (2023). PubMed PMC
Haltmar, H., Janura, M., Haltmar, M. & Elfmark, M. The effect of gait imagery and its more demanding variant on muscle activity in stroke survivors. Rehabil. Fyz. Lék.31(3), 116–125. 10.48095/ccrhfl2024116 (2024).
Kaneko, N., Masugi, Y., Yokoyama, H. & Nakazawa, K. Difference in phase modulation of corticospinal excitability during the observation of the action of walking, with and without motor imagery. Neuroreport29(3), 169–173. 10.1097/WNR.0000000000000941 (2018). PubMed
Kotegawa, K., Yasumura, A. & Teramoto, W. Changes in prefrontal cortical activation during motor imagery of precision gait with age and task difficulty. Behav. Brain Res.399, 113046. 10.1016/j.bbr.2020.113046 (2021). PubMed
Putzolu, M. et al. Neural oscillations during motor imagery of complex gait: An HdEEG study. Sci. Rep.12, 4314. 10.1038/s41598-022-07511-x (2022). PubMed PMC
Goodworth, A. D. & Peterka, R. J. Influence of stance width on frontal plane postural dynamics and coordination in human balance control. J. Neurophysiol.104(2), 1103–1118. 10.1152/jn.00916.2009 (2010). PubMed PMC
Sheahan, H. R., Ingram, J. N., Žalalytė, G. M. & Wolpert, D. M. Imagery of movements immediately following performance allows learning of motor skills that interfere. Sci. Rep.8, 14330. 10.1038/s41598-018-32606-9 (2018). PubMed PMC
Yang, Y. J., Jeon, E. J., Kim, J. S. & Chung, C. K. Characterization of kinesthetic motor imagery compared with visual motor imageries. Sci. Rep.11, 3751. 10.1038/s41598-021-82241-0 (2021). PubMed PMC
Stegeman, D. F. & Hermens, H. J. Standards for surface electromyography: the European project (SENIAM). In: Surface electromyography application areas and parameters. Proceedings of the third general SENIAM workshop on surface electromyography. Aachen, Germany, 108–112 (1998).
van Melick, N., Meddeler, B. M., Hoogeboom, T. J., Nijhuis-van der Sanden, M. & van Cingel, R. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PloS One12, e0189876. 10.1371/journal.pone.0189876 (2017). PubMed PMC
Budini, K. et al. An exploration of the use of Inertial Measurement Units in the assessment of dynamic postural control of the knee and the effect of bracing and taping. Physiother. Pract. Res.39, 91–98. 10.3233/PPR-180111 (2018).
Costello, K. E. et al. Quantifying varus thrust in knee osteoarthritis using wearable inertial sensors: A proof of concept. Clin. Biomech. (Bristol, Avon)80, 105232. 10.1016/j.clinbiomech.2020.105232 (2020). PubMed PMC
Cotter, K. N. Mental control in musical imagery: A dual component model. Front. Psychol.10, 1–13. 10.3389/fpsyg.2019.01904 (2019). PubMed PMC
Ghislieri, M., Gastaldi, L., Pastorelli, S., Tadano, S. & Agostini, V. Wearable inertial sensors to assess standing balance: A systematic review. Sensors19(19), 4075. 10.3390/s19194075 (2019). PubMed PMC
Contessa, P., De Luca, C. J., Roy, S. H. & Richards, J. In The Comprehensive Textbook of Clinical Biomechanics (ed. Richards, J.) 225–225 (Elsevier, 2018).
Kolářová, B. et al. The effect of motor imagery on quality of movement when performing reaching tasks in healthy subjects: A proof of concept. J. Bodyw. Mov. Ther.29, 161–166. 10.1016/j.jbmt.2021.10.004 (2022). PubMed
Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn. (Routledge Academic, 1988).
Brach, J. S., Van Swearingen, J. M., Perera, S., Wert, D. M. & Studenski, S. Motor learning versus standard walking exercise in older adults with subclinical gait dysfunction: A randomized clinical trial. J. Am. Ger. Soc.61, 1879–1886. 10.1111/jgs.12506 (2013). PubMed PMC
Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci.14, 3208–3224. 10.1523/JNEUROSCI.14-05-03208.1994 (1994). PubMed PMC
Solomon, J. P., Kraeutner, S. N., Bardouille, T. & Boe, S. G. Probing the temporal dynamics of movement inhibition in motor imagery. Brain Res.1720, 146310. 10.1016/j.brainres.2019.146310 (2019). PubMed
Gabel, C. P., Osborne, J. & Burkett, B. The influence of “Slacklining” on quadriceps rehabilitation, activation and intensity. J. Sci. Med. Sport18, 62–66. 10.1016/j.jsams.2013.11.007 (2015). PubMed
Pfusterschmied, J. et al. Effect of instability training equipment on lower limb kinematics and muscle activity. Sportverletzung Sportschaden27, 28–33. 10.1055/s-0032-1330725 (2013). PubMed
Kaneko, N., Masugi, Y., Usuda, N., Yokoyama, H. & Nakazawa, K. Muscle-specific modulation of spinal reflexes in lower-limb muscles during action observation with and without motor imagery of walking. Brain Sci.9(12), 333. 10.3390/brainsci9120333 (2019). PubMed PMC
Wong, A. L., Haith, A. M. & Krakauer, J. W. Motor planning. Neuroscientist21, 385–398. 10.1177/1073858414541484 (2015). PubMed
Montull, L., Vázquez, P., Rocas, L., Hristovski, R. & Balagué, N. Flow as an embodied state. Informed awareness of slackline walking. Front. Psychol.10.3389/fpsyg.2019.02993 (2020). PubMed PMC
Desmurget, M. & Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci.4, 423–431. 10.1016/s1364-6613(00)01537-0 (2000). PubMed
Gentili, R., Cahouet, V., Ballay, Y. & Papaxanthis, C. Inertial properties of the arm are accurately predicted during motor imagery. Behav. Brain Res.155, 231–239. 10.1016/j.bbr.2004.04.027 (2004). PubMed
Harris, D. J., Vine, S. J. & Wilson, M. R. Neurocognitive mechanisms of the flow state. Prog. Brain Res.234, 221–243. 10.1016/bs.pbr.2017.06.012 (2017). PubMed
Holmes, P. S. & Collins, D. J. The PETTLEP approach to motor imagery: A functional equivalence model for sport psychologists. J. Appl. Sport Psychol.13, 60–83. 10.1080/10413200109339004 (2001).
Verhagen, E. et al. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: A prospective controlled trial. Am. J. Sports Med.32, 1385–1393. 10.1177/0363546503262177 (2004). PubMed
Allami, N., Paulignan, Y., Brovelli, A. & Boussaoud, D. Visuo-motor learning with combination of different rates of motor imagery and physical practice. Exp. Brain Res.184, 105–113. 10.1007/s00221-007-1086-x (2008). PubMed