• This record comes from PubMed

Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum

. 2024 Dec 20 ; 13 (24) : . [epub] 20241220

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IGA.20243109 Internal Grant Agency of the Faculty of Tropical AgriSciences of the Czech University of Life Sciences Prague

Many indigenous plants of the Philippines, including essential oil-bearing species, remain phytochemically and pharmacologically unexplored. In this study, the chemical composition of leaf essential oils (EOs) hydrodistilled from Litsea leytensis (Lauraceae) and Piper philippinum (Piperaceae) was determined using dual-column (HP-5MS/DB-WAX)/dual-detector gas chromatography and mass spectrometry analysis. Caryophyllene oxide (15.751/16.018%) was identified as the main compound in L. leytensis EO, followed by β-caryophyllene (11.130/11.430%) and α-copaene (9.039/9.221%). Ishwarane (25.937/25.280%), nerolidol (9.372/10.519%) and 3-ishwarone (6.916/2.588%) were the most abundant constituents of P. philippinum EO. Additionally, the in vitro growth-inhibitory activity of the EOs in the liquid and vapour phases against Staphylococcus aureus was evaluated using the broth microdilution volatilisation assay. Although the results showed no anti-staphylococcal effect, the presence of various bioactive compounds in both EOs suggests their potential future use in industrial applications.

See more in PubMed

Aumeeruddy-Elalfi Z., Gurib-Fakim A., Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod. 2015;7:197–204. doi: 10.1016/j.indcrop.2015.03.058. DOI

Afshari M., Rahimmalek M. Variation in essential oil composition, bioactive compounds, anatomical and antioxidant activity of Achillea aucheri, an endemic species of Iran, at different phenological stages. Chem. Biodivers. 2018;15:e1800319. doi: 10.1002/cbdv.201800319. PubMed DOI

Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI

Boer E., Ella A.B. Plant Resources of Southeast Asia, No. 18: Plants Producing Exudates. Backhuys Publishers; Leiden, The Netherlands: 2000. pp. 55–60.

Engay-Gutierrez K.G., Espaldon M.V.O., Tiburan C.L., Jr., Villanueva-Peyraube J.D., Macandog D.M., Sobremisana M.J. Predicting species occurrence of Litsea leytensis Merr. in the provinces of Laguna and Quezon, Philippines. J. Environ. Sci. Manag. 2023;26:27–44. doi: 10.47125/jesam/2023_1/03. DOI

Langenberger G. Forest Vegetation Studies on the Foothills of Mt. Pangasugan, Leyte/The Philippines. Deutsche Gesellschaft für, Technische Zusammenarbeit; Eschborn, Germany: 2000. p. 54.

Gardner R. Piper (Piperaceae) in the Philippine islands: The climbing species. Blumea. 2006;51:569–586. doi: 10.3767/000651906X622139. DOI

Chen Y., Liao C., Chen I. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochem. 2007;68:2101–2111. doi: 10.1016/j.phytochem.2007.05.003. PubMed DOI

Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI

William E.W. Retention Indices by NIST Mass Spectrometry Data Center, WebBook Chemie. NIST Standard Reference Database Number 69. [(accessed on 5 January 2021)]; Available online: https://webbook.nist.gov/chemistry/

Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.

Danham S.S., Tabana Y.M., Iqbai M.A., Ahamed M.B.K., Ezzat M.O., Majid A.S.A., Majid A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015;20:11808–11829. doi: 10.3390/molecules200711808. PubMed DOI PMC

Fidyt K., Fiedorowicz A., Strzadala L., Szumny A. β-Caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016;5:3007–3017. doi: 10.1002/cam4.816. PubMed DOI PMC

Machado K.D., Islam M.T., Ali E.S., Rouf R., Uddin S.J., Dev S., Shilpi J.A., Shill M.C., Reza H.M., Das A.K., et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018;32:2376–2388. doi: 10.1002/ptr.6199. PubMed DOI

Chavan M.J., Wakte P.S., Shinde D.B. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2009;17:149–151. doi: 10.1016/j.phymed.2009.05.016. PubMed DOI

Turkez H., Togar B., Tatar A. Tricyclic sesquiterpene alpha-copaene prevents H2O2-induced neurotoxicity. J. Intercult. Ethnopharmacol. 2014;3:21–28. doi: 10.5455/jice.20131229104710. DOI

Shelly T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae) (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2001;9:497–502. doi: 10.1603/0013-8746(2001)094[0497:ETCACC]2.0.CO;2. DOI

Kendra P.E., Montgomery W.S., Deyrup M.A., Wakarchuk D. Improved lure for redbay ambrosia beetle developed by enrichment of alpha-copaene content. J. Pest Sci. 2016;89:427–438. doi: 10.1007/s10340-015-0708-5. DOI

Ben Hsouna A., Ben Halima N., Abdelkafi S., Hamdi N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013;62:973–980. doi: 10.5650/jos.62.973. PubMed DOI

Chen S.Y., Zheng H., Yang S.P., Qi Y.G., Li W., Kang S.N., Hu H., Hua Q., Wu Y.K., Liu Z.J. Antimicrobial activity and mechanism of α-copaene against foodborne pathogenic bacteria and its application in beef soup. LWT—Food Sci. Technol. 2024;195:115848. doi: 10.1016/j.lwt.2024.115848. DOI

Nor Azah M.A., Susiarti S. Litsea cubeba (Lour.) Persoon. In: Oyen L.P.A., Dung N.X., editors. Plant Resources of Southeast Asia, No. 19: Essential-Oil Plants. Backhuys Publishers; Leiden, The Netherlands: 1999. pp. 123–126.

Azhar M.A.M., Salleh W.M.N.H.W. Chemical composition and biological activities of essential oils of the genus Litsea (Lauraceae)—A review. Agric. Conspec. Sci. 2020;85:97–103.

Chang H.S., Chen I.S. Chemical constituents and bioactivity of Formosan lauraceous plants. J. Food Drug Anal. 2016;24:247–263. doi: 10.1016/j.jfda.2015.10.008. PubMed DOI PMC

Bighelli A., Muselli A., Casanova J., Tam N.T., Van Anh V., Bessière J.M. Chemical variability of Litsea cubeba leaf oil from Vietnam. J. Essent. Oil Res. 2005;17:86–88. doi: 10.1080/10412905.2005.9698839. DOI

Qiu Y.F., Wang Y., Li Y. Solvent-free microwave extraction of essential oils from Litsea cubeba (Lour.) Pers. at different harvesting times and their skin-whitening cosmetic potential. Antioxidants. 2022;11:2389. doi: 10.3390/antiox11122389. PubMed DOI PMC

Dosoky N.S., Satyal P., Barata L.M., da Silva J.K.R., Setzer W.N. Volatiles of black pepper fruits (Piper nigrum L.) Molecules. 2019;24:4244. doi: 10.3390/molecules24234244. PubMed DOI PMC

Pino O., Sánchez Y., Rodríguez H., Correa T.M., Demedio J., Sanabria J.L. Chemical characterization and acaricidal activity of the essential oil from Piper aduncum subsp. ossanum against Varroa destructor. Rev. Prot. Veg. 2011;26:52–61.

da Silva A., Matias E., Rocha J., Araújo A., de Freitas T., Campina F., Costa M., Silva L., Amaral W., Maia B., et al. Gas chromatography coupled to mass spectrometry (GC-MS) characterization and evaluation of antibacterial bioactivities of the essential oils from Piper arboreum Aubl., Piper aduncum L. e Piper gaudichaudianum Kunth. Z. Naturforsch. C. 2021;76:35–42. doi: 10.1515/znc-2020-0045. PubMed DOI

Parthasarathy V.A., Chempakam B., Zachariah J.T. Chemistry of Spices. CAB International; London, UK: 2008. DOI

Lapczynski A., Bhatia S.P., Letizia C.S., Api A.M. Fragrance material review on nerolidol (isomer unspecified) Food Chem. Toxicol. 2008;46:247–250. doi: 10.1016/j.fct.2008.06.063. PubMed DOI

Bezerra C.F., Júnior J.G.d.A., Honorato R.d.L., dos Santos A.T.L., da Silva J.C.P., Silva D.V.D., Leal A.L.A.B., de Freitas T.S., Vieira T.A.T., Rocha J.E., et al. Antifungal properties of nerolidol-containing liposomes in association with fluconazole. Membranes. 2020;10:194. doi: 10.3390/membranes10090194. PubMed DOI PMC

Saito A.Y., Marin R.A.A., Menchaca V.D.S., Sussmann R.A.C., Kimura E.A., Katzin A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents. 2016;48:641–646. doi: 10.1016/j.ijantimicag.2016.08.017. PubMed DOI

Silva M.P., de Oliveira R.N., Mengarda A.C., Roquini D.B., Allegretti M.S., Salvadori M.C., Teixeira F.S., de Sousa D.P., Pinto P.L.S., da Silva Filho A.A., et al. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. Int. J. Antimicrob. Agents. 2017;50:467–472. doi: 10.1016/j.ijantimicag.2017.06.005. PubMed DOI

Chan W.K., Tan L.T.H., Chan K.G., Lee L.H., Goh B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules. 2016;21:529. doi: 10.3390/molecules21050529. PubMed DOI PMC

Ratnayake R., Jayasinghe S., Ratnayake B.M., Andersen R.J., Karunaratne V. Complete 2D NMR assignment and antifungal activity of ishwarane isolated from Hortonia, a genus endemic to Sri Lanka. J. Natl. Sci. Found. Sri Lanka. 2008;36:109–112. doi: 10.4038/jnsfsr.v36i1.139. DOI

Vila R., Milo B., Tomi F., Casanova J., Ferro E.A., Canigueral S. Chemical composition of the essential oil from the leaves of Piper fulvescens, a plant traditionally used in Paraguay. J. Ethnopharmacol. 2001;76:105–107. doi: 10.1016/S0378-8741(01)00211-2. PubMed DOI

de Oliveira A.C., Sá I.S.C., Mesquita R.S., Brenner L., Pereira B.L., Leandro A., Pocrifka L.A., de Souza T.P., Amado J.R.R., Azevedo S.G., et al. Nanoemulsion loaded with volatile oil from Piper alatipetiolatum as an alternative agent in the control of Aedes aegypti. Rev. Bras. Farmacogn. 2020;30:667–677. doi: 10.1007/s43450-020-00092-8. DOI

Oyedeji O.A., Adeniyi B.A., Ajayi O., Konig W.A. Essential oil composition of Piper guineense and its antimicrobial activity. Another chemotype from Nigeria. Phytother. Res. 2005;19:362–364. doi: 10.1002/ptr.1679. PubMed DOI

Lago J.H.G., Oliveira A., Guimarães E.F., Kato M. 3-Ishwarone and 3-ishwarol, rare sesquiterpenes oil from leaves of Peperomia oreophila Hensch. J. Braz. Chem. Soc. 2007;18:638–642. doi: 10.1590/S0103-50532007000300022. DOI

Dos S., Junior F.M., Velozo L.S.M., De Carvalho E.M., Marques A.M., Borges R.M., Trindade A.P.F., Dos Santos M.I.S., De Albuquerque A.C.F., Costa F.L.P., et al. 3-Ishwarone, a rare ishwarane sesquiterpene from Peperomia scandens Ruiz & Pavon: Structural elucidation through a joint experimental and theoretical study. Molecules. 2013;18:13520–13529. doi: 10.3390/molecules181113520. PubMed DOI PMC

Li Y.X., Zhang C., Pan S.Y., Chen L., Liu M., Yang K.L., Zeng X.B., Tian J. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT—Food Sci. Technol. 2020;117:108644. doi: 10.1016/j.lwt.2019.108644. DOI

Vihanova K., Urbanova K., Nguon S., Kokoska L. Chemical composition of essential oils and supercritical carbon dioxide extracts from Amomum kravanh, Citrus hystrix and Piper nigrum ‘Kampot’. Molecules. 2023;28:7748. doi: 10.3390/molecules28237748. PubMed DOI PMC

Vernin G.A., Parkanyi C., Cozzolino F., Fellous R. GC/MS analysis of the volatile constituents of Corymbia citriodora Hook. from Reunion Island. J. Essent. Oil Res. 2004;16:560–565. doi: 10.1080/10412905.2004.9698798. DOI

Council of Europe (EDQM) European Pharmacopoeia. 7th ed. EDQM; Strasbourg, France: 2013.

Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing, 25th Informational Supplement M100-S25. CLSI; Wayne, PA, USA: 2015. pp. 158–163.

Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI

Frankova A., Vištejnova L., Merinas-Amo T., Leheckova Z., Doskocil I., Wong Soon J., Kudera T., Laupua F., Alonso-Moraga A., Kokoska L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021;264:113220. doi: 10.1016/j.jep.2020.113220. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...