Evaluation of Chemical Composition and Anti-Staphylococcal Activity of Essential Oils from Leaves of Two Indigenous Plant Species, Litsea leytensis and Piper philippinum
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA.20243109
Internal Grant Agency of the Faculty of Tropical AgriSciences of the Czech University of Life Sciences Prague
PubMed
39771253
PubMed Central
PMC11679346
DOI
10.3390/plants13243555
PII: plants13243555
Knihovny.cz E-resources
- Keywords
- GC-MS, Lauraceae, Piperaceae, essential oil, hydrodistillation, volatile compounds,
- Publication type
- Journal Article MeSH
Many indigenous plants of the Philippines, including essential oil-bearing species, remain phytochemically and pharmacologically unexplored. In this study, the chemical composition of leaf essential oils (EOs) hydrodistilled from Litsea leytensis (Lauraceae) and Piper philippinum (Piperaceae) was determined using dual-column (HP-5MS/DB-WAX)/dual-detector gas chromatography and mass spectrometry analysis. Caryophyllene oxide (15.751/16.018%) was identified as the main compound in L. leytensis EO, followed by β-caryophyllene (11.130/11.430%) and α-copaene (9.039/9.221%). Ishwarane (25.937/25.280%), nerolidol (9.372/10.519%) and 3-ishwarone (6.916/2.588%) were the most abundant constituents of P. philippinum EO. Additionally, the in vitro growth-inhibitory activity of the EOs in the liquid and vapour phases against Staphylococcus aureus was evaluated using the broth microdilution volatilisation assay. Although the results showed no anti-staphylococcal effect, the presence of various bioactive compounds in both EOs suggests their potential future use in industrial applications.
Institute of Tropical Ecology Visayas State University Visca Baybay City 6521 A Leyte Philippines
Philrootcrops Visayas State University Baybay City 6521 A Leyte Philippines
See more in PubMed
Aumeeruddy-Elalfi Z., Gurib-Fakim A., Mahomoodally F. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of Mauritius. Ind. Crops Prod. 2015;7:197–204. doi: 10.1016/j.indcrop.2015.03.058. DOI
Afshari M., Rahimmalek M. Variation in essential oil composition, bioactive compounds, anatomical and antioxidant activity of Achillea aucheri, an endemic species of Iran, at different phenological stages. Chem. Biodivers. 2018;15:e1800319. doi: 10.1002/cbdv.201800319. PubMed DOI
Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Boer E., Ella A.B. Plant Resources of Southeast Asia, No. 18: Plants Producing Exudates. Backhuys Publishers; Leiden, The Netherlands: 2000. pp. 55–60.
Engay-Gutierrez K.G., Espaldon M.V.O., Tiburan C.L., Jr., Villanueva-Peyraube J.D., Macandog D.M., Sobremisana M.J. Predicting species occurrence of Litsea leytensis Merr. in the provinces of Laguna and Quezon, Philippines. J. Environ. Sci. Manag. 2023;26:27–44. doi: 10.47125/jesam/2023_1/03. DOI
Langenberger G. Forest Vegetation Studies on the Foothills of Mt. Pangasugan, Leyte/The Philippines. Deutsche Gesellschaft für, Technische Zusammenarbeit; Eschborn, Germany: 2000. p. 54.
Gardner R. Piper (Piperaceae) in the Philippine islands: The climbing species. Blumea. 2006;51:569–586. doi: 10.3767/000651906X622139. DOI
Chen Y., Liao C., Chen I. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochem. 2007;68:2101–2111. doi: 10.1016/j.phytochem.2007.05.003. PubMed DOI
Kokoska L., Kloucek P., Leuner O., Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019;26:5501–5541. doi: 10.2174/0929867325666180831144344. PubMed DOI
William E.W. Retention Indices by NIST Mass Spectrometry Data Center, WebBook Chemie. NIST Standard Reference Database Number 69. [(accessed on 5 January 2021)]; Available online: https://webbook.nist.gov/chemistry/
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.
Danham S.S., Tabana Y.M., Iqbai M.A., Ahamed M.B.K., Ezzat M.O., Majid A.S.A., Majid A.M.S.A. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules. 2015;20:11808–11829. doi: 10.3390/molecules200711808. PubMed DOI PMC
Fidyt K., Fiedorowicz A., Strzadala L., Szumny A. β-Caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016;5:3007–3017. doi: 10.1002/cam4.816. PubMed DOI PMC
Machado K.D., Islam M.T., Ali E.S., Rouf R., Uddin S.J., Dev S., Shilpi J.A., Shill M.C., Reza H.M., Das A.K., et al. A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother. Res. 2018;32:2376–2388. doi: 10.1002/ptr.6199. PubMed DOI
Chavan M.J., Wakte P.S., Shinde D.B. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. bark. Phytomedicine. 2009;17:149–151. doi: 10.1016/j.phymed.2009.05.016. PubMed DOI
Turkez H., Togar B., Tatar A. Tricyclic sesquiterpene alpha-copaene prevents H2O2-induced neurotoxicity. J. Intercult. Ethnopharmacol. 2014;3:21–28. doi: 10.5455/jice.20131229104710. DOI
Shelly T.E. Exposure to α-copaene and α-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae) (Diptera: Tephritidae) Ann. Entomol. Soc. Am. 2001;9:497–502. doi: 10.1603/0013-8746(2001)094[0497:ETCACC]2.0.CO;2. DOI
Kendra P.E., Montgomery W.S., Deyrup M.A., Wakarchuk D. Improved lure for redbay ambrosia beetle developed by enrichment of alpha-copaene content. J. Pest Sci. 2016;89:427–438. doi: 10.1007/s10340-015-0708-5. DOI
Ben Hsouna A., Ben Halima N., Abdelkafi S., Hamdi N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013;62:973–980. doi: 10.5650/jos.62.973. PubMed DOI
Chen S.Y., Zheng H., Yang S.P., Qi Y.G., Li W., Kang S.N., Hu H., Hua Q., Wu Y.K., Liu Z.J. Antimicrobial activity and mechanism of α-copaene against foodborne pathogenic bacteria and its application in beef soup. LWT—Food Sci. Technol. 2024;195:115848. doi: 10.1016/j.lwt.2024.115848. DOI
Nor Azah M.A., Susiarti S. Litsea cubeba (Lour.) Persoon. In: Oyen L.P.A., Dung N.X., editors. Plant Resources of Southeast Asia, No. 19: Essential-Oil Plants. Backhuys Publishers; Leiden, The Netherlands: 1999. pp. 123–126.
Azhar M.A.M., Salleh W.M.N.H.W. Chemical composition and biological activities of essential oils of the genus Litsea (Lauraceae)—A review. Agric. Conspec. Sci. 2020;85:97–103.
Chang H.S., Chen I.S. Chemical constituents and bioactivity of Formosan lauraceous plants. J. Food Drug Anal. 2016;24:247–263. doi: 10.1016/j.jfda.2015.10.008. PubMed DOI PMC
Bighelli A., Muselli A., Casanova J., Tam N.T., Van Anh V., Bessière J.M. Chemical variability of Litsea cubeba leaf oil from Vietnam. J. Essent. Oil Res. 2005;17:86–88. doi: 10.1080/10412905.2005.9698839. DOI
Qiu Y.F., Wang Y., Li Y. Solvent-free microwave extraction of essential oils from Litsea cubeba (Lour.) Pers. at different harvesting times and their skin-whitening cosmetic potential. Antioxidants. 2022;11:2389. doi: 10.3390/antiox11122389. PubMed DOI PMC
Dosoky N.S., Satyal P., Barata L.M., da Silva J.K.R., Setzer W.N. Volatiles of black pepper fruits (Piper nigrum L.) Molecules. 2019;24:4244. doi: 10.3390/molecules24234244. PubMed DOI PMC
Pino O., Sánchez Y., Rodríguez H., Correa T.M., Demedio J., Sanabria J.L. Chemical characterization and acaricidal activity of the essential oil from Piper aduncum subsp. ossanum against Varroa destructor. Rev. Prot. Veg. 2011;26:52–61.
da Silva A., Matias E., Rocha J., Araújo A., de Freitas T., Campina F., Costa M., Silva L., Amaral W., Maia B., et al. Gas chromatography coupled to mass spectrometry (GC-MS) characterization and evaluation of antibacterial bioactivities of the essential oils from Piper arboreum Aubl., Piper aduncum L. e Piper gaudichaudianum Kunth. Z. Naturforsch. C. 2021;76:35–42. doi: 10.1515/znc-2020-0045. PubMed DOI
Parthasarathy V.A., Chempakam B., Zachariah J.T. Chemistry of Spices. CAB International; London, UK: 2008. DOI
Lapczynski A., Bhatia S.P., Letizia C.S., Api A.M. Fragrance material review on nerolidol (isomer unspecified) Food Chem. Toxicol. 2008;46:247–250. doi: 10.1016/j.fct.2008.06.063. PubMed DOI
Bezerra C.F., Júnior J.G.d.A., Honorato R.d.L., dos Santos A.T.L., da Silva J.C.P., Silva D.V.D., Leal A.L.A.B., de Freitas T.S., Vieira T.A.T., Rocha J.E., et al. Antifungal properties of nerolidol-containing liposomes in association with fluconazole. Membranes. 2020;10:194. doi: 10.3390/membranes10090194. PubMed DOI PMC
Saito A.Y., Marin R.A.A., Menchaca V.D.S., Sussmann R.A.C., Kimura E.A., Katzin A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents. 2016;48:641–646. doi: 10.1016/j.ijantimicag.2016.08.017. PubMed DOI
Silva M.P., de Oliveira R.N., Mengarda A.C., Roquini D.B., Allegretti M.S., Salvadori M.C., Teixeira F.S., de Sousa D.P., Pinto P.L.S., da Silva Filho A.A., et al. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. Int. J. Antimicrob. Agents. 2017;50:467–472. doi: 10.1016/j.ijantimicag.2017.06.005. PubMed DOI
Chan W.K., Tan L.T.H., Chan K.G., Lee L.H., Goh B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules. 2016;21:529. doi: 10.3390/molecules21050529. PubMed DOI PMC
Ratnayake R., Jayasinghe S., Ratnayake B.M., Andersen R.J., Karunaratne V. Complete 2D NMR assignment and antifungal activity of ishwarane isolated from Hortonia, a genus endemic to Sri Lanka. J. Natl. Sci. Found. Sri Lanka. 2008;36:109–112. doi: 10.4038/jnsfsr.v36i1.139. DOI
Vila R., Milo B., Tomi F., Casanova J., Ferro E.A., Canigueral S. Chemical composition of the essential oil from the leaves of Piper fulvescens, a plant traditionally used in Paraguay. J. Ethnopharmacol. 2001;76:105–107. doi: 10.1016/S0378-8741(01)00211-2. PubMed DOI
de Oliveira A.C., Sá I.S.C., Mesquita R.S., Brenner L., Pereira B.L., Leandro A., Pocrifka L.A., de Souza T.P., Amado J.R.R., Azevedo S.G., et al. Nanoemulsion loaded with volatile oil from Piper alatipetiolatum as an alternative agent in the control of Aedes aegypti. Rev. Bras. Farmacogn. 2020;30:667–677. doi: 10.1007/s43450-020-00092-8. DOI
Oyedeji O.A., Adeniyi B.A., Ajayi O., Konig W.A. Essential oil composition of Piper guineense and its antimicrobial activity. Another chemotype from Nigeria. Phytother. Res. 2005;19:362–364. doi: 10.1002/ptr.1679. PubMed DOI
Lago J.H.G., Oliveira A., Guimarães E.F., Kato M. 3-Ishwarone and 3-ishwarol, rare sesquiterpenes oil from leaves of Peperomia oreophila Hensch. J. Braz. Chem. Soc. 2007;18:638–642. doi: 10.1590/S0103-50532007000300022. DOI
Dos S., Junior F.M., Velozo L.S.M., De Carvalho E.M., Marques A.M., Borges R.M., Trindade A.P.F., Dos Santos M.I.S., De Albuquerque A.C.F., Costa F.L.P., et al. 3-Ishwarone, a rare ishwarane sesquiterpene from Peperomia scandens Ruiz & Pavon: Structural elucidation through a joint experimental and theoretical study. Molecules. 2013;18:13520–13529. doi: 10.3390/molecules181113520. PubMed DOI PMC
Li Y.X., Zhang C., Pan S.Y., Chen L., Liu M., Yang K.L., Zeng X.B., Tian J. Analysis of chemical components and biological activities of essential oils from black and white pepper (Piper nigrum L.) in five provinces of southern China. LWT—Food Sci. Technol. 2020;117:108644. doi: 10.1016/j.lwt.2019.108644. DOI
Vihanova K., Urbanova K., Nguon S., Kokoska L. Chemical composition of essential oils and supercritical carbon dioxide extracts from Amomum kravanh, Citrus hystrix and Piper nigrum ‘Kampot’. Molecules. 2023;28:7748. doi: 10.3390/molecules28237748. PubMed DOI PMC
Vernin G.A., Parkanyi C., Cozzolino F., Fellous R. GC/MS analysis of the volatile constituents of Corymbia citriodora Hook. from Reunion Island. J. Essent. Oil Res. 2004;16:560–565. doi: 10.1080/10412905.2004.9698798. DOI
Council of Europe (EDQM) European Pharmacopoeia. 7th ed. EDQM; Strasbourg, France: 2013.
Clinical and Laboratory Standards Institute (CLSI) Performance Standards for Antimicrobial Susceptibility Testing, 25th Informational Supplement M100-S25. CLSI; Wayne, PA, USA: 2015. pp. 158–163.
Houdkova M., Rondevaldova J., Doskocil I., Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62. doi: 10.1016/j.fitote.2017.02.008. PubMed DOI
Frankova A., Vištejnova L., Merinas-Amo T., Leheckova Z., Doskocil I., Wong Soon J., Kudera T., Laupua F., Alonso-Moraga A., Kokoska L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021;264:113220. doi: 10.1016/j.jep.2020.113220. PubMed DOI