• This record comes from PubMed

Response of the bGeigie Nano and CzechRad Monitors to Secondary Cosmic Radiation

. 2024 Dec 11 ; 24 (24) : . [epub] 20241211

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Ambient dose rate surveying has the objective, in most cases, to quantify terrestrial radiation levels. This is true in particular for Citizen Monitoring projects. Readings of detectors, which do not provide spectrally resolved information, such as G-M counters, are the sum of contributions from different sources, including cosmic radiation. To estimate the terrestrial component, one has to subtract the remaining ones. In this paper, we investigate the cosmic response of two particular monitors, the bGeigie Nano, which has been used extensively in the Safecast Citizen Monitoring project, and its upgraded version, the new CzechRad, which uses the same G-M detector, and show how the local contribution of cosmic radiation can be estimated.

See more in PubMed

Vohland K., Landzandstra A., Ceccaroni L., Lemmens R., Perelló J., Ponti M., Samson R., Wagenknecht K., editors. The Science of Citizen Science. Springer International Publishing; Berlin/Heidelberg, Germany: 2021. DOI

Brown A., Franken P., Bonner S., Dolezal N., Moross J. Safecast: Successful citizen-science for radiation measurement and communication after Fukushima. J. Radiol. Prot. 2016;36:S82–S101. doi: 10.1088/0952-4746/36/2/S82. PubMed DOI

Bossew P., Kuča P., Helebrant J. Mean ambient dose rate in various cities, inferred from Safecast data. J. Environ. Radioact. 2020;225:106363. doi: 10.1016/j.jenvrad.2020.106363. PubMed DOI

Bossew P., Kuča P., Helebrant J. Citizen monitoring of ambient dose rate: Metrological challenges; Proceedings of the RAD—10th International Conference on Radiation in Various Fields of Research; Herceg Novi, Montenegro. 13–17 June 2022; [(accessed on 4 November 2024)]. Available online: https://www.rad2022-spring.rad-conference.org/

Bossew P., Kuča P., Helebrant J. rue and spurious anomalies in ambient dose rate monitoring; Proceedings of the ICHLERA, 10th International Conference on High Level Environmental Radiation Areas; Strasbourg, France. 27–30 June 2022; [(accessed on 4 November 2024)]. Available online: https://indico.in2p3.fr/event/19295/

Kuča P., Helebrant J., Bossew P. Safecast—A Citizen Science initiative for ambient dose rate mapping; Quality assurance issues; Proceedings of the EGU General Assembly 2021; Online. 19–30 April 2021; EGU21-1343. DOI

Kuča P., Helebrant J., Bossew P. Safecast—Citizen Science for radiation monitoring. RAP Conf. Proc. 2021;6:32–38. doi: 10.37392/RAPPROC.2021.07. DOI

Kuča P., Helebrant J., Bossew P. Characterization of the bGeigie Nano instrument used in Citizen Science dose rate monitoring; Proceedings of the RAP—International Conference on Radiation Applications; Thessaloniki, Greece. 6–10 June 2022; [(accessed on 4 November 2024)]. Available online: https://www.rap-conference.org/22/

Kuča P., Helebrant J., Bossew P. Citizen monitoring of ambient dose rate: The Safecast project; Proceedings of the IRPA—6th European Congress on Radiation Protection; Budapest, Hungary. 30 May–3 June 2022. PubMed

European Commission; Joint Research CentreCinelli G., De Cort M., Tollefsen T., editors. European Atlas of Natural Radiation. Publication Office of the European Union; Luxembourg: 2019. [(accessed on 4 November 2024)]. Available online: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiation/Download-page.

UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation Reports to the General Assembly, with Annexes. [(accessed on 10 November 2022)]. Available online: https://www.unscear.org/unscear/en/publications/scientific-reports.html.

Wissmann F. Variations observed in environmental radiation at ground level. Radiat. Prot. Dosim. 2006;118:3–10. doi: 10.1093/rpd/nci317. PubMed DOI

Spurný F. Radiation doses at high altitudes and during space flights. Radiat. Phys. Chem. 2000;61:301–307. doi: 10.1016/S0969-806X(01)00253-5. DOI

Bouville A., Lowder W.M. Human population exposure to cosmic radiation. Radiat. Prot. Dosim. 1988;24:293–299. doi: 10.1093/oxfordjournals.rpd.a080290. DOI

Lowder W.M., O’Brien K. HASL-254 Report. Health and Safety Laboratory, U.S. Atomic Energy Commission; New York, NY, USA: 1972. Cosmic-ray dose rates in the atmosphere.

SpaceWeather Solar Cycle Progression. 2022. [(accessed on 4 November 2024)]. Available online: https://www.spaceweatherlive.com/en/solar-activity/solar-cycle.html.

Wissmann F., Dangendorf V., Schrewe U. Radiation exposure at ground level by secondary cosmic radiation. Radiat. Meas. 2005;39:95–104. doi: 10.1016/j.radmeas.2004.03.025. PubMed DOI

Wissmann F., Rupp A., Stöhlker U. Characterization of dose rate instruments for environmental radiation monitoring. Kerntechnik. 2007;72:193–198. doi: 10.3139/124.100341. DOI

Cinelli G., Bossew P., Hernández-Ceballos M.A., Tollefsen T., De Cort M. Long-term variation of cosmic dose rate; Proceedings of the ENVIRA (4th International Conference on Environmental Radioactivity); Vilnius, Lithuania. 29 May–2 June 2017; [(accessed on 4 November 2024)]. p. 124. Available online: http://envira2017.ftmc.lt/files/abstractbook20170802.pdf.

Sato T. Evaluation of World Population-Weighted Effective Dose due to Cosmic Ray Exposure. Sci. Rep. 2001;6:33932. doi: 10.1038/srep33932. PubMed DOI PMC

ICRU ICRU Report 84, Reference Data for the Validation of Doses from Cosmic-Radiation Exposure of Aircraft Crew. [(accessed on 4 November 2024)];J. ICRU. 2010 10 Available online: https://journals.sagepub.com/toc/crua/10/2.

Bossew P., Cinelli G., Hernández-Ceballos M., Cernohlawek N., Gruber V., Dehandschutter B., Menneson F., Bleher M., Stöhlker U., Hellmann I., et al. Estimating the terrestrial gamma dose rate by decomposition of the ambient dose equivalent rate. J. Environ. Radioact. 2017;166:296–308. doi: 10.1016/j.jenvrad.2016.02.013. PubMed DOI

Spiers F.W., Gibson J.A.B., Thompson I.M.G. A Guide to the Measurement of Environmental Gamma-Ray Dose Rate. British Committee on Radiation Units and Measurements. 1981. [(accessed on 22 July 2020)]. Available online: http://cds.cern.ch/record/1057200/files/CM-P00066948.pdf.

Lewis V.E., Hunt J.B. Fast neutron sensitivities of Geiger-Mueller counter gamma dosemeters. Phys. Med. Biol. 1978;23:888–893. doi: 10.1088/0031-9155/23/5/005. PubMed DOI

Guldbakke S., Jahr R., Lesiecki H., Schölermann H. Neutron Sensitivity of Geiger-Müller Photon Dosemeters for Neutron Energies Between 100 keV and 19 MeV. 1980. [(accessed on 4 November 2024)]. Available online: https://www.irpa.net/irpa5/cdrom/VOL.2/J2_37.PDF. PubMed

Mijnheer B.J., Guldbakke S., Lewis V.E., Broerse J.J. Comparison of the fast-neutron sensitivity of a Geiger-Muller counter using different techniques. Phys. Med. Biol. 1982;27:91–96. doi: 10.1088/0031-9155/27/1/009. PubMed DOI

Maughan R.L., Yudelev M., Kota C. A measurement of the fast-neutron sensitivity of a Geiger-Müller detector in the pulsed neutron beam from a superconducting cyclotron. Phys. Med. Biol. 1996;41:1341–1351. doi: 10.1088/0031-9155/41/8/007. PubMed DOI

Nakamura T. Cosmic-ray Neutron Spectrometry and Dosimetry. J. Nucl. Sci. Technol. 2008;45((Suppl. S5)):1–7. doi: 10.1080/00223131.2008.10875772. DOI

Lowder W.M., Beck H.L. Cosmic-ray ionization in the lower atmosphere. J. Geophys. Res. 1966;71:4661–4668. doi: 10.1029/JZ071i019p04661. DOI

Cinelli G., Gruber V., De Felice L., Bossew P., Hernandez-Ceballos M.A., Tollefsen T., Mundigl S., De Cort M. European annual cosmic-ray dose: Estimation of population exposure. J. Maps. 2017;13:812–821. doi: 10.1080/17445647.2017.1384934. DOI

Hernández-Ceballos M.A., Cinelli G., Marín Ferrer M., Tollefsen T., De Felice L., Nweke E., Tognoli P.V., Vanzo S., De Cort M. A climatology of 7Be in surface air in European Union. J. Environ. Radioact. 2015;141:62–70. doi: 10.1016/j.jenvrad.2014.12.003. PubMed DOI

BGS (British Geological Survey; n.y.): The Earth’s Magnetic Field: An Overview. Available online: https://geomag.bgs.ac.uk/education/earthmag.html . Geomagnetic Coordinate Calculator. . [(accessed on 25 October 2024)]. Available online: https://geomag.bgs.ac.uk/data_service/models_compass/coord_calc.html.

World Data Center for Geomagnetism, Data Analysis Center for Geomagnetism and Space Magnetism, Graduate School of Science, Kyoto University Kyoto. [(accessed on 25 October 2024)]. Available online: https://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/

O’Brien K., Friedberg W., Sauer H.H., Smart D.F. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes. Environ. Int. 1996;22:9–44. doi: 10.1016/S0160-4120(96)00086-4. PubMed DOI

Hůlka J., Kuča P., Helebrant J., Rozlívka Z. Citizens Measurements in Radiation Protection and Emergency Preparedness and Response—Its Role, Its Role, Pros and Cons; Proceedings of the EUROSAFE; Paris, France. 6–7 November 2017.

Kuča P., Helebrant J., Hůlka J. Role of Citizens Measurements in Radiation Protection, Emergency Preparedness and Response—Its Pros and Cons. In Proceedings of the ICRP 4th International Symposium on the System of Radiological Protection & 2nd European Radiological Protection Week, Paris, France, 10–12 October 2017; [(accessed on 26 January 2019)]. Available online: http://www.icrp-erpw2017.com/upload/presentations/ERPW%20Communication/Session_02/Session%2002_5_KUCA_Presentation.pdf.

Helebrant J., Kuča P., Hůlka J. RAMESIS: Radiační měřící síť pro instituce a školy k zajištění včasné informovanosti a zvýšení bezpečnosti občanů měst a obcí. 2018. [(accessed on 26 January 2019)]. (In Czech) Available online: https://www.suro.cz/cz/vyzkum/vysledky/safecast/09Hulka.pdf.

SÚRO Detektor záření SAFECAST a jeho využití pro veřejnost. 2019. [(accessed on 26 January 2019)]. (In Czech) Available online: https://www.suro.cz/cz/vyzkum/vysledky/safecast.

QGIS—A Free and Open Source Geographic Information System. [(accessed on 4 November 2024)]. Available online: https://www.qgis.org/en/site/

Vanek M., Ďuriková A., Salva J. Safecast bGeigie Nano as a Tool for Teaching Students to Understand Monitoring Environmental Radioactivity. Proc., Conference: Earth in a Trap? 2018. Analytical Methods in Fire and Environmental Science, Hodruša-Hámre, Slovak Republic. [(accessed on 26 January 2019)]. Available online: https://www.researchgate.net/publication/326031794_Safecast_bGeigie_Nano_as_a_tool_for_teaching_students_to_understand_monitoring_environmental_radioactivity.

CzechRad Mobile detector for radiation mapping—Similar to SAFECAST bGeigie Nano. 2021. [(accessed on 20 February 2021)]. Available online: https://github.com/juhele/CzechRad.

Yogeshwar R. Calibration of SAFECAST bGeigie-Nano—Radiation Detector (# 1025) Safecast; Shibuya, Japan: 2014. Document supplied to one of the authors (PB) by Safecast.

Wagner E., Sorom R., Wiles L. Radiation monitoring for the masses. Health Phys. 2016;110:37–44. doi: 10.1097/HP.0000000000000407. PubMed DOI

Tanji T., Okino M., Sugioka I., Mochizuki S. Radon and its Daughters in the Atmosphere Over the Equatorial Pacific Ocean. Radiat. Prot. Dosim. 1992;45:399–401. doi: 10.1093/rpd/45.1-4.399. DOI

Čeliković I., Pantelić G., Vukanac I., Krneta Nikolić J., Živanović M., Cinelli G., Gruber V., Baumann S., Quindos Poncela L.S., Rabago D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health. 2022;19:662. doi: 10.3390/ijerph19020662. PubMed DOI PMC

ICRP Dose coefficients for external exposures to environmental sources. ICRP Publication 144. Ann. ICRP. 2020;49:111–145. doi: 10.1177/0146645320906277. PubMed DOI

EPA External Exposure to Radionuclides in Air, Water and Soil—Federal Guidance Report No. 5; EPA 402-R-19-002; 2019. [(accessed on 4 November 2024)]; Available online: https://www.epa.gov/sites/default/files/2019-08/documents/fgr_15_final_508_2019aug02.pdf.

Smetsers R.C.G.M., Blaauboer R.O. A Dynamic Compensation Method for Natural Ambient Dose Rate Based on 6 Years Data from the Dutch Radioactivity Monitoring Network. Radiat. Prot. Dosim. 1997;69:19–31. doi: 10.1093/oxfordjournals.rpd.a031883. DOI

DOE External Dose-Rate Conversion Factors for Calculation of Dose to the Public. DOE/EH—0070. [(accessed on 4 November 2024)];1988 Available online: https://www.osti.gov/servlets/purl/6953527.

Kocher D.C. Dose Rate Conversion Factors for External Exposure to Photons and Electrons. NUREG/CR-1918. 1981. [(accessed on 4 November 2024)]. Available online: https://digital.library.unt.edu/ark:/67531/metadc1058696/m2/1/high_res_d/5020464.pdf. PubMed

Kümmel M., Dushe C., Müller S., Gehrcke K. Outdoor 222Rn-concentrations in Germany—Part 1—Natural background. J. Environ. Radioact. 2014;132:123–130. doi: 10.1016/j.jenvrad.2014.01.012. PubMed DOI

Chen J., Harley N.H. A Review of Indoor and Outdoor Radon Equilibrium Factors—Part I. Health Phys. 2018;115:490–499. doi: 10.1097/HP.0000000000000909. PubMed DOI

Cuculeanu V., Sonoc C., Georgescu M. Radioactivity of Radon and Thoron Daughters in Romania. Radiat. Prot. Dosim. 1992;45:83–485. doi: 10.1093/rpd/45.1-4.483. DOI

Kataoka T., Tsukamoto O., Yunoki E., Michihiro K., Sugiyama H., Shimizu M., Mori T., Sahashi T., Fujii S. Variation of 222Rn Concentration in Outdoor Air due to Variation of the Atmospheric Boundary Layer. Radiat. Prot. Dosim. 1992;45:403–406. doi: 10.1093/rpd/45.1-4.403. DOI

Dueñas C., Pérez M., Fernández M.C., Carretero J. Radon concentrations in surface air and vertical atmospheric stability of the lower atmosphere. J. Environ. Radioact. 1996;31:87–102. doi: 10.1016/0265-931X(95)00058-I. DOI

Levin I., Born M., Cuntz M., Langendörfer U., Mantsch S., Naegler T., Schmidt M., Varlagin A., Verclas S., Wagenbach D. Observations of atmospheric variability and soil exhalation rate of radon-222 at a Russian forest site Technical approach and deployment for boundary layer studies. Tellus. 2002;54B:462–475. doi: 10.1034/j.1600-0889.2002.01346.x. DOI

Oikawa S., Kanno N., Sanada T., Ohashi N., Uesugi M., Sato K., Abukawa J., Higuchi H. A nationwide survey of outdoor radon concentration in Japan. J. Environ. Radioact. 2003;65:203–213. doi: 10.1016/S0265-931X(02)00097-8. PubMed DOI

Sesana L., Ottobrini B., Polla G., Facchini U. 222Rn as indicator of atmospheric turbulence: Measurements at Lake Maggiore and on the pre-Alps. J. Environ. Radioact. 2005;86:271–288. doi: 10.1016/j.jenvrad.2005.09.005. PubMed DOI

Desideri D., Roselli C., Feduzi L., Assunta Meli M. Monitoring the atmospheric stability by using radon concentration measurements: A study in a Central Italy site. J. Radioanal. Nucl. Chem. 2006;270:523–530. doi: 10.1007/s10967-006-0458-1. DOI

Garbero V., Dellacasa G., Bianchi D., Magnoni M., Erbetta L. Outdoor radon concentration measurements: Some correlation with major urban pollutants. Radiat. Prot. Dosim. 2009;137:332–335. doi: 10.1093/rpd/ncp253. PubMed DOI

Omori Y., Tohbo I., Nagahama H., Ishikawa Y., Takahashi M., Sato H., Sekine T. Variation of atmospheric radon concentration with bimodal seasonality. Radiat. Meas. 2009;44:1045–1050. doi: 10.1016/j.radmeas.2009.10.077. DOI

Zhang L., Zhang L., Guo Q. A long-term investigation of the atmospheric radon concentration in Beijing, China. J. Radiol. Prot. 2009;29:263–268. doi: 10.1088/0952-4746/29/2/012. PubMed DOI

Zhang L., Guo Q. Observation and analysis of atmospheric radon in Qingdao, China. J. Radiol. Prot. 2011;31:129–134. doi: 10.1088/0952-4746/31/1/009. PubMed DOI

Műllerová M., Holý K., Bulko M. Results of outdoor radon monitoring in Bratislava and Nováky. Radiat. Prot. Dosim. 2011;145:325–328. doi: 10.1093/rpd/ncr068. PubMed DOI

Weller R., Levin I., Schmithüsen D., Nachbar M., Asseng J., Wagenbach D. On the variability of atmospheric 222Rn activity concentrations measured at Neumayer, coastal Antarctica. [(accessed on 4 November 2024)];Atmos. Chem. Phys. Discuss. 2013 13:32817–32847. Available online: www.atmos-chem-phys-discuss.net/13/32817/2013/

Hayashi K., Yasuoka Y., Nagahama H., Muto J., Ishikawa T., Omori Y., Suzuki T., Homma Y., Mukai T. Normal seasonal variations for atmospheric radon concentration: A sinusoidal model. J. Environ. Radioact. 2015;139:149–153. doi: 10.1016/j.jenvrad.2014.10.007. PubMed DOI

Holý K., Műllerová M., Bulko M., Holá O., Melicherová T. Outdoor 222Rn behaviour in different areas of Slovakia. NUKLEONIKA. 2016;61:281–288. doi: 10.1515/nuka-2016-0047. DOI

Bossew P., Benà E., Chambers S., Janik M. Analysis of outdoor and indoor radon concentration time series recorded with RadonEye monitors. Atmosphere. 2024 to be submitted .

Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. [(accessed on 2 August 2024)];Palaeontol. Electron. 2001 4:9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm https://www.nhm.uio.no/english/research/resources/past/

Jilek K., Slezákova M., Thomas J. Diurnal and seasonal variability of outdoor radon concentration in te area of the NRPI Prague. Rad. Prot. Dosim. 2014;160:57–61. doi: 10.1093/rpd/ncu091. PubMed DOI

Bossew P., Da Silva N., Alberti H., Silva M.A., Navarro F.C., De Oliveira T.A., Cardoso Takahashi L., de Souza Filho O.A., Otero U., Kuča P., et al. A remarkable small local natural radiation anomaly in Poços de Caldas, Brazil. Eur. Phys. J. Spec. Topics. 2024 submitted .

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...