Isolation of a Unique Monoterpene Diperoxy Dimer From Ziziphora clinopodioides subsp. bungeana Together With Triterpenes With Antidiabetic Properties

. 2025 Jun ; 36 (4) : 1223-1230. [epub] 20250108

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39780359

Grantová podpora
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund-Project
LM2023042 Ministry of Education, Youth, and Sports of the CR
LM2023048 Ministry of Education, Youth, and Sports of the CR
GAČR 23-04655S Grantová Agentura České Republiky
AP23487559 Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan

INTRODUCTION: Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f. is used in traditional medicine for various purposes. Previous phytochemical studies focused on phenolic compounds, but triterpenoids were almost overlooked. OBJECTIVE: The study focused on the isolation of compounds with dual antidiabetic activity from the aerial parts of Z. clinopodioides subsp. bungeana. MATERIALS AND METHODS: Separation of CHCl3-soluble fraction by silica gel column chromatography using different mobile phases and purification of compounds by semi-preparative HPLC or preparative TLC. The structures of pure compounds were elucidated by 1D and 2D NMR experiments along with HRMS. Compound 1 was additionally identified by the single crystal X-ray diffraction method. α-Glucosidase inhibitory assay and GLUT4 expression and translocation in C2C12 myotubes were conducted to evaluate antidiabetic potential of isolated compounds. RESULTS: This phytochemical study led to the isolation of 20 compounds, including a unique monoterpene diperoxy dimer (1). Compounds 7 and 9-11 displayed more potent α-glucosidase inhibitory activity (IC50 45.3-135.3 μM) than acarbose used as a positive control (IC50 264.7 μM), while only pomolic acid (5) increased GLUT4 translocation in C2C12 myotubes in a significant manner. CONCLUSION: Extensive chromatographic separation led to the isolation and identification of a unique monoterpene diperoxy dimer (1) from aerial parts of Z. clinopodioides subsp. bungeana. Some triterpenes inhibited α-glucosidase, another increased GLUT4 translocation. Although none of the isolated compounds demonstrated dual antidiabetic activity, selected triterpenes proved to be potent antidiabetic agents in vitro.

Zobrazit více v PubMed

Šmejkal K., Malaník M., Zhaparkulova K., et al., “Kazakh Ziziphora Species as Sources of Bioactive Substances,” Molecules 21, no. 7 (2016): 826, 10.3390/molecules21070826. PubMed DOI PMC

Asgharipour M. R., Akbari Abjahan A., and Dahmarde M., “Variability in Ziziphora clinopodioides subsp. bungeana (Juz.) Based on Morphological Traits and Essential Oils Profile,” Not Bot Horti Agrobot Cluj‐Napoca 44, no. 1 (2016): 189–194, 10.15835/nbha44110118. DOI

Sonboli A., Mirjalili M. H., Hadian J., Ebrahimi S. N., and Yousefzadi M., “Antibacterial Activity and Composition of the Essential Oil of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech. f. from Iran,” Zeitschrift für Naturforschung. Section C 61, no. 9–10 (2006): 677–680, 10.1515/znc-2006-9-1011. PubMed DOI

Srivedavyasasri R., Zhaparkulova K. A., Sakipova Z. B., Ibragimova L., and Ross S. A., “Phytochemical and Biological Studies on Ziziphora bungeana,” Chemistry of Natural Compounds 54, no. 1 (2018): 195–197, 10.1007/s10600-018-2296-0. PubMed DOI PMC

He J., Yang W., Cheng B., et al., “Integrated Metabolomic and Transcriptomic Profiling Reveals the Tissue‐Specific Flavonoid Compositions and Their Biosynthesis Pathways in Ziziphora Bungeana,” Chinese Medicine 15, no. 1 (2020): 73, 10.1186/s13020-020-00354-6. PubMed DOI PMC

Zhaparkulova K., Karaubayeva A., Sakipova Z., et al., “Multidirectional Characterization of Phytochemical Profile and Health‐Promoting Effects of Ziziphora bungeana Juz. Extracts,” Molecules 27, no. 24 (2022): 8994, 10.3390/molecules27248994. PubMed DOI PMC

Whaley A. O., Ivkin D. Y., Zhaparkulova K. A., et al., “Chemical Composition and Cardiotropic Activity of Ziziphora clinopodioides subsp. bungeana (Juz.) Rech.f,” Journal of Ethnopharmacology 315 (2023): 116660, 10.1016/j.jep.2023.116660. PubMed DOI

Zou G. A., Guo D., Zhao H. Q., and Aisa H. A., “Bioactive Constituents of Ziziphora Clinopodioides,” Chemistry of Natural Compounds 51, no. 5 (2015): 961–963, 10.1007/s10600-015-1462-x. DOI

Tomczyk M., Ceylan O., Locatelli M., Tartaglia A., Ferrone V., and Sarikurkcu C., “Ziziphora taurica subsp. taurica: Analytical Characterization and Biological Activities,” Biomolecules 9, no. 8 (2019): 367, 10.3390/biom9080367. PubMed DOI PMC

Škárková G., Isolation of Content Substances From Biological Material by Using Various Chromatographic Methods II (Czech Republic: University of Veterinary and Pharmaceutical Sciences Brno, 2016).

Nazaruk J. and Borzym‐Kluczyk M., “The Role of Triterpenes in the Management of Diabetes Mellitus and Its Complications,” Phytochemistry Reviews 14, no. 4 (2015): 675–690, 10.1007/s11101-014-9369-x. PubMed DOI PMC

Jung S. H., Ha Y. J., Shim E. K., et al., “Insulin‐Mimetic and Insulin‐Sensitizing Activities of a Pentacyclic Triterpenoid Insulin Receptor Activator,” Biochemical Journal 403, no. 2 (2007): 243–250, 10.1042/BJ20061123. PubMed DOI PMC

Sheldrick G. M., “ SHELXT – Integrated Space‐Group and Crystal‐Structure Determination,” Acta Crystallographica Section A: Foundations and Advances 71, no. 1 (2015): 3–8, 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G. M., “Crystal Structure Refinement With SHELXL ,” Acta Crystallographica Section C: Structural Chemistry 71, no. 1 (2015): 3–8, 10.1107/S2053229614024218. PubMed DOI PMC

Kleemiss F., Dolomanov O. V., Bodensteiner M., et al., “Accurate Crystal Structures and Chemical Properties From NoSpherA2,” Chemical Science 12, no. 5 (2021): 1675–1692, 10.1039/D0SC05526C. PubMed DOI PMC

Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., and Puschmann H., “ OLEX2: A Complete Structure Solution, Refinement and Analysis Program,” Journal of Applied Crystallography 42, no. 2 (2009): 339–341, 10.1107/S0021889808042726. DOI

Bourhis L. J., Dolomanov O. V., Gildea R. J., Howard J. A. K., and Puschmann H., “The Anatomy of a Comprehensive Constrained, Restrained Refinement Program for the Modern Computing Environment – Olex2 Dissected,” Acta Crystallographica Section A: Foundations and Advances 71, no. 1 (2015): 59–75, 10.1107/S2053273314022207. PubMed DOI PMC

Neese F., “Software Update: The orca Program System—Version 5.0,” WIREs Computational Molecular Science 12, no. 5 (2022): e1606, 10.1002/wcms.1606. DOI

Fan P., Terrier L., Hay A. E., Marston A., and Hostettmann K., “Antioxidant and Enzyme Inhibition Activities and Chemical Profiles of Polygonum Sachalinensis F. Schmidt ex Maxim (Polygonaceae),” Fitoterapia 81, no. 2 (2010): 124–131, 10.1016/j.fitote.2009.08.019. PubMed DOI

Kubínová R., Pořízková R., Navrátilová A., et al., “Antimicrobial and Enzyme Inhibitory Activities of the Constituents of Plectranthus madagascariensis (Pers.) Benth,” Journal of Enzyme Inhibition and Medicinal Chemistry 29, no. 5 (2014): 749–752, 10.3109/14756366.2013.848204. PubMed DOI

Yamamoto N., Yamashita Y., Yoshioka Y., Nishiumi S., and Ashida H., “Rapid Preparation of a Plasma Membrane Fraction: Western Blot Detection of Translocated Glucose Transporter 4 From Plasma Membrane of Muscle and Adipose Cells and Tissues,” Current Protocols in Protein Science 85, no. 1 (2016): 29.18.1–29.18.12, 10.1002/cpps.13. PubMed DOI

Treml J., Leláková V., Šmejkal K., et al., “Antioxidant Activity of Selected Stilbenoid Derivatives in a Cellular Model System,” Biomolecules 9, no. 9 (2019): 468, 10.3390/biom9090468. PubMed DOI PMC

Lal A. R., Cambie R. C., Rutledge P. S., and Woodgate P. D., “Ent‐Pimarane and ent‐Abietane Diterpenes From Euphorbia Fidjiana,” Phytochemistry 29, no. 7 (1990): 2239–2246, 10.1016/0031-9422(90)83045-3. DOI

Siddiqui S., Hafeez F., Begum S., and Siddiqui B. S., “Oleanderol, a New Pentacyclic Triterpene From the Leaves of Nerium Oleander,” Journal of Natural Products 51, no. 2 (1988): 229–233, 10.1021/np50056a006. DOI

Macías F. A., Simonet A. M., and Galindo J. C. G., “Bioactive Steroids and Triterpenes From Melilotus Messanensis and Their Allelopathic Potential,” Journal of Chemical Ecology 23, no. 7 (1997): 1781–1803, 10.1023/B:JOEC.0000006451.19649.a0. DOI

Lee M. K., Lee K. Y., Jeon H. Y., Sung S. H., and Kim Y. C., “Antifibrotic Activity of Triterpenoids From the Aerial Parts of Euscaphis Japonica on Hepatic Stellate Cells,” Journal of Enzyme Inhibition and Medicinal Chemistry 24, no. 6 (2009): 1276–1279, 10.3109/14756360902829709. PubMed DOI

Piozzi F., Paternostro M., Passannanti S., and Gacs‐Baitz E., “Triterpenes From Amaracus dictamnus,” Phytochemistry 25, no. 2 (1986): 539–541, 10.1016/S0031-9422(00)85522-3. DOI

Seebacher W., Simic N., Weis R., Saf R., and Kunert O., “Complete Assignments of 1H and 13C NMR Resonances of Oleanolic Acid, 18α‐Oleanolic Acid, Ursolic Acid and Their 11‐Oxo Derivatives,” Magnetic Resonance in Chemistry 41, no. 8 (2003): 636–638, 10.1002/mrc.1214. DOI

Dais P., Plessel R., Williamson K., and Hatzakis E., “Complete 1 H and 13 C NMR Assignment and 31 P NMR Determination of Pentacyclic Triterpenic Acids,” Analytical Methods 9, no. 6 (2017): 949–957, 10.1039/C6AY02565J. DOI

Yang G., Zhou P., Li Y., Ding J., and Hu J., “P‐Menthene‐Type Monoterpene Peroxy Dimers From Pilea aquarum subsp. brevicornuta,” Tetrahedron Letters 85 (2021): 153463, 10.1016/j.tetlet.2021.153463. DOI

Ding H., Wu X., Pan J., Hu X., Gong D., and Zhang G., “New Insights Into the Inhibition Mechanism of Betulinic Acid on α‐Glucosidase,” Journal of Agricultural and Food Chemistry 66, no. 27 (2018): 7065–7075, 10.1021/acs.jafc.8b02992. PubMed DOI

Ding H., Hu X., Xu X., Zhang G., and Gong D., “Inhibitory Mechanism of two Allosteric Inhibitors, Oleanolic Acid and Ursolic Acid on α‐Glucosidase,” International Journal of Biological Macromolecules 107 (2018): 1844–1855, 10.1016/j.ijbiomac.2017.10.040. PubMed DOI

Hou W., Li Y., Zhang Q., et al., “Triterpene Acids Isolated From Lagerstroemia Speciosa Leaves as α‐Glucosidase Inhibitors,” Phytotherapy Research 23, no. 5 (2009): 614–618, 10.1002/ptr.2661. PubMed DOI

Ni M., Pan J., Hu X., Gong D., and Zhang G., “Inhibitory Effect of Corosolic Acid on α‐Glucosidase: Kinetics, Interaction Mechanism, and Molecular Simulation,” Journal of the Science of Food and Agriculture 99, no. 13 (2019): 5881–5889, 10.1002/jsfa.9862. PubMed DOI

Zhang B. W., Xing Y., Wen C., et al., “Pentacyclic Triterpenes as α‐Glucosidase and α‐Amylase Inhibitors: Structure‐Activity Relationships and the Synergism With Acarbose,” Bioorganic & Medicinal Chemistry Letters 27, no. 22 (2017): 5065–5070, 10.1016/j.bmcl.2017.09.027. PubMed DOI

Lee M. S. and Thuong P. T., “Stimulation of Glucose Uptake by Triterpenoids From Weigela Subsessilis ,” Phytotherapy Research 24, no. 1 (2010): 49–53, 10.1002/ptr.2865. PubMed DOI

Thuong P. T., Lee C. H., Dao T. T., et al., “Triterpenoids From the Leaves of Diospyros Kaki (Persimmon) and Their Inhibitory Effects on Protein Tyrosine Phosphatase 1B,” Journal of Natural Products 71, no. 10 (2008): 1775–1778, 10.1021/np800298w. PubMed DOI

Choi J. Y., Na M., Hyun Hwang I., et al., “Isolation of Betulinic Acid, Its Methyl Ester and Guaiane Sesquiterpenoids With Protein Tyrosine Phosphatase 1B Inhibitory Activity From the Roots of Saussurea Lappa C.B.Clarke,” Molecules 14, no. 1 (2009): 266–272, 10.3390/molecules14010266. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...