Optimization of MoNiCr Alloy Production Through Additive Manufacturing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/23_021/0008433
The Ministry of Education, Youth and Sports
No. 11/2023
Ministry of Industry and Trade of the Czech Republic
PubMed
39795688
PubMed Central
PMC11722172
DOI
10.3390/ma18010042
PII: ma18010042
Knihovny.cz E-zdroje
- Klíčová slova
- additive manufacturing (AM), directed energy deposition (DED-LB), miniature tensile test specimens (MTTs), molten salt reactor (MSR), nickel alloy MoNiCr, solidification cracking,
- Publikační typ
- časopisecké články MeSH
One of the concepts behind Generation IV reactors is a molten salt coolant system, where the materials for the reactor itself and for the primary and secondary circuit components are subjected to extreme chemical and thermal stresses. Due to the unavailability of these materials, a nickel-molybdenum alloy known as MoNiCr has been developed in the Czech Republic. This paper discusses the manufacturing process for the MoNiCr alloy, covering conventional casting technology, forming, powder atomization, additive manufacturing (AM) using the directed energy deposition (DED-LB) process, and final heat treatment. Special attention was given to the quality of the input powders for additive manufacturing, particularly regarding the optimization of the chemical composition, which significantly influenced the quality of the additively manufactured components. AM enables the realization of complex structural designs that are critical for energy applications, despite the high susceptibility of the MoNiCr alloy to solidification cracking. Through AM, a test body was successfully produced with a maximum defect rate of 0.03% and the following mechanical properties: a yield strength (YS) of 279 MPa, an ultimate tensile strength (UTS) of 602 MPa, and an elongation (El) of 51%.
Zobrazit více v PubMed
Muránsky O., Yang C., Zhu H., Karatchevtseva I., Sláma P., Nový Z., Edwards L. Molten Salt Corrosion of Ni-Mo-Cr Candidate Structural Materials for Molten Salt Reactor (MSR) Systems. Corros. Sci. 2019;159:108087. doi: 10.1016/j.corsci.2019.07.011. DOI
Serp J., Allibert M., Beneš O., Delpech S., Feynberg O., Ghetta V., Heuer D., Holcomb D., Ignatiev V., Kloosterman J.L., et al. The Molten Salt Reactor (MSR) in Generation IV: Overview and Perspectives. Prog. Nucl. Energy. 2014;77:308–319. doi: 10.1016/j.pnucene.2014.02.014. DOI
Koukolikova M., Slama P., Dlouhy J., Cerny J., Marecek M. Cold/Hot Deformation Induced Recrystallization of Nickel-Based Superalloys for Molten Salt Reactors. Metals. 2018;8:477. doi: 10.3390/met8070477. DOI
Cihlář M., Mareček M., Uhlíř J., Prehradný J., Zácha P., Fedoriková A., Procházka J. Corrosion of Structural Materials in NaF-NaBF4 Molten Salt. Ann. Nucl. Energy. 2025;211:111018. doi: 10.1016/j.anucene.2024.111018. DOI
Ignatiev V., Surenkov A. Alloys Compatibility in Molten Salt Fluorides: Kurchatov Institute Related Experience. J. Nucl. Mater. 2013;441:592–603. doi: 10.1016/j.jnucmat.2013.05.007. DOI
Reed R.C., Rae C.M.F. Physical Metallurgy of the Nickel-Based Superalloys. 5th ed. Volume 1. Elsevier B.V.; Amsterdam, The Netherlands: 2014.
Podany P., Novy Z., Dlouhy J. Recrystallization Behaviour of a Nickel-Based Superalloy. Mater. Tehnol. 2016;50:199–205. doi: 10.17222/mit.2014.163. DOI
Koukolíková M., Sláma P., Nový Z., Svoboda P., Toman P., Mareček M., Uhlír J. Research of Materials and Components for Molten Salt Reactors; Proceedings of the Transactions of the American Nuclear Society; San Francisco, CA, USA. 11–15 June 2017;
Novy Z., Dzugan J., Wangyao P., Kraus L. Development of Forming Processes for MoNiCr Alloy. Key Eng. Mater. 2015;658:3–7. doi: 10.4028/www.scientific.net/KEM.658.3. DOI
Novy Z., Džugan J., Motyčka P., Podany P., Dlouhy J. On Formability of MoNiCr Alloy. Adv. Mater. Res. 2011;295–297:1731–1737. doi: 10.4028/www.scientific.net/AMR.295-297.1731. DOI
Singh A.V., Dad Ansari M.H., Wang S., Laux P., Luch A., Kumar A., Patil R., Nussberger S. The Adoption of Three-Dimensional Additive Manufacturing from Biomedical Material Design to 3D Organ Printing. Appl. Sci. 2019;9:811. doi: 10.3390/app9040811. DOI
Koukolíková M., Simson T., Rzepa S., Brázda M., Džugan J. The Influence of Laser Power on the Interfaces of Functionally Graded Materials Fabricated by Powder-Based Directed Energy Deposition. J. Mater. Sci. 2022;57:13695–13723. doi: 10.1007/s10853-022-07453-9. DOI
Wei C., Li L., Zhang X., Chueh Y.H. 3D Printing of Multiple Metallic Materials via Modified Selective Laser Melting. CIRP Ann. 2018;67:245–248. doi: 10.1016/j.cirp.2018.04.096. DOI
Godec M., Malej S., Feizpour D., Donik Č., Balažic M., Klobčar D., Pambaguian L., Conradi M., Kocijan A. Hybrid Additive Manufacturing of Inconel 718 for Future Space Applications. Mater. Charact. 2021;172:110842. doi: 10.1016/j.matchar.2020.110842. DOI
Özel T., Shokri H., Loizeau R. A Review on Wire-Fed Directed Energy Deposition Based Metal Additive Manufacturing. J. Manuf. Mater. Process. 2023;7:45. doi: 10.3390/jmmp7010045. DOI
Zhou Y., Jiang D., Al-Akailah A., Ning F. Understanding the Formation of Laser-Induced Melt Pools with Both Wire and Powder Feeding in Directed Energy Deposition. Addit. Manuf. 2024;89:104312. doi: 10.1016/j.addma.2024.104312. DOI
Melzer D., Džugan J., Koukolíková M., Rzepa S., Vavřík J. Structural Integrity and Mechanical Properties of the Func-tionally Graded Material Based on 316L/IN718 Processed by DED Technology. Mater. Sci. Eng. A. 2021;811:141038. doi: 10.1016/j.msea.2021.141038. DOI
Qiu C., Chen H., Liu Q., Yue S., Wang H. On the Solidification Behaviour and Cracking Origin of a Nickel-Based Superalloy during Selective Laser Melting. Mater. Charact. 2019;148:330–344. doi: 10.1016/j.matchar.2018.12.032. DOI
Zhao Y., Ma Z., Yu L., Liu Y. New Alloy Design Approach to Inhibiting Hot Cracking in Laser Additive Manufactured Nickel-Based Superalloys. Acta Mater. 2023;247:118736. doi: 10.1016/j.actamat.2023.118736. DOI
Mathias L.E.T., Pinotti V.E., Batistão B.F., Rojas-Arias N., Figueira G., Andreoli A.F., Gargarella P. Metal Powder as Feedstock for Laser-Based Additive Manufacturing: From Production to Powder Modification. J. Mater. Res. 2024;39:19–47. doi: 10.1557/s43578-023-01271-8. DOI
Brennan M.C., Keist J.S., Palmer T.A. Defects in Metal Additive Manufacturing Processes. J. Mater. Eng. Perform. 2021;30:4808–4818. doi: 10.1007/s11665-021-05919-6. DOI
Chandra S., Wang C., Tor S.B., Ramamurty U., Tan X. Powder-Size Driven Facile Microstructure Control in Powder-Fusion Metal Additive Manufacturing Processes. Nat. Commun. 2024;15:3094. doi: 10.1038/s41467-024-47257-w. PubMed DOI PMC
Particle Size Analysis—Laser Diffraction Methods. International Organization for Standardization; Geneva, Switzerland: 2009.
Standard Test Methods for Flow Rate of Metal Powders Using the Hall Flowmeter Funnel. ASTM International; West Conshohocken, PA, USA: 2011.
Melzer D., Džugan J., Koukolíková M., Rzepa S., Dlouhý J., Brázda M., Bucki T. Fracture Characterisation of Vertically Build Functionally Graded 316L Stainless Steel with Inconel 718 Deposited by Directed Energy Deposition Process. Virtual Phys. Prototyp. 2022;17:821–840. doi: 10.1080/17452759.2022.2073793. DOI
Pehlivan E., Roudnicka M., Dzugan J., Koukolikova M., Králík V., Seifi M., Lewandowski J.J., Dalibor D., Daniel M. Effects of Build Orientation and Sample Geometry on the Mechanical Response of Miniature CP-Ti Grade 2 Strut Samples Manufactured by Laser Powder Bed Fusion. Addit. Manuf. 2020;35:101403. doi: 10.1016/j.addma.2020.101403. DOI
Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. International Organization for Standardization; Geneva, Switzerland: 2019.
Standard Test Methods for Tension Testing of Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2022.
Hu T., Yang S., Zhou N., Zhang Y., Luo J. Role of Disordered Bipolar Complexions on the Sulfur Embrittlement of Nickel General Grain Boundaries. Nat. Commun. 2018;9:2764. doi: 10.1038/s41467-018-05070-2. PubMed DOI PMC
Kennedy S.K., Dalley A.M., Kotyk G.J. Additive Manufacturing: Assessing Metal Powder Quality Through Characterizing Feedstock and Contaminants. J. Mater. Eng. Perform. 2019;28:728–740. doi: 10.1007/s11665-018-3841-5. DOI
Belan J. GCP and TCP Phases Presented in Nickel-Base Superalloys. Mater. Today Proc. 2016;3:936–941. doi: 10.1016/j.matpr.2016.03.024. DOI
Long F., Yoo Y.S., Jo C.Y., Seo S.M., Jeong H.W., Song Y.S., Jin T., Hu Z.Q. Phase Transformation of η and σ Phases in an Experimental Nickel-Based Superalloy. J. Alloys Compd. 2009;478:181–187. doi: 10.1016/j.jallcom.2008.11.121. DOI
Singh A.V., Chandrasekar V., Prabhu V.M., Bhadra J., Laux P., Bhardwaj P., Al-Ansari A.A., Aboumarzouk O.M., Luch A., Dakua S.P. Sustainable Bioinspired Materials for Regenerative Medicine: Balancing Toxicology, Environmental Impact, and Ethical Considerations. IOP Sci. 2024;19:060501. doi: 10.1088/1748-605X/ad85bb. PubMed DOI
Wang S., Ma B., Feng D., Chen S., Ma Y., Li H., Lv C., Zheng W., Yang J. Microstructure, Mechanical Properties and Fatigue Crack Growth Behavior of Gas Tungsten Arc Welding Welded Joint of the Hastelloy N Alloy. Materials. 2023;16:6510. doi: 10.3390/ma16196510. PubMed DOI PMC