Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
15K06964
The Japan Society
R04-1-019
The Uchida Energy Science Promotion Foundation
LX22NPO5103
National Institute of Virology and Bacteriology
European Union - Next Generation EU
MEYS CR
PubMed
39797736
PubMed Central
PMC11724365
DOI
10.1093/nar/gkae1324
PII: 7951714
Knihovny.cz E-zdroje
- MeSH
- archeální proteiny * chemie metabolismus genetika ultrastruktura MeSH
- dimerizace MeSH
- elektronová kryomikroskopie MeSH
- malé podjednotky ribozomu archebakteriální * chemie metabolismus ultrastruktura MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- Pyrococcus furiosus * metabolismus genetika MeSH
- ribozomální proteiny * chemie metabolismus ultrastruktura genetika MeSH
- ribozomy * metabolismus chemie MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- archeální proteiny * MeSH
- ribozomální proteiny * MeSH
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Zobrazit více v PubMed
Green R., Noller H.F. Ribosomes and translation. Annu. Rev. Biochem. 1997; 66:679–716. PubMed
Russell J.B., Cook G.M. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol. Rev. 1995; 59:48–62. PubMed PMC
Njenga R., Boele J., Ozturk Y., Koch H.G. Coping with stress: how bacteria fine-tune protein synthesis and protein transport. J. Biol. Chem. 2023; 299:105163. PubMed PMC
Starosta A.L., Lassak J., Jung K., Wilson D.N. The bacterial translation stress response. FEMS Microbiol. Rev. 2014; 38:1172–1201. PubMed PMC
Prossliner T., Skovbo Winther K., Sorensen M.A., Gerdes K. Ribosome hibernation. Annu. Rev. Genet. 2018; 52:321–348. PubMed
Kumar N., Sharma S., Kaushal P.S. Cryo-EM structure of the mycobacterial 70S ribosome in complex with ribosome hibernation promotion factor RafH. Nat. Commun. 2024; 15:638. PubMed PMC
Polikanov Y.S., Blaha G.M., Steitz T.A. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science. 2012; 336:915–918. PubMed PMC
Helena-Bueno K., Rybak M.Y., Ekemezie C.L., Sullivan R., Brown C.R., Dingwall C., Basle A., Schneider C., Connolly J.P.R., Blaza J.N. et al. . A new family of bacterial ribosome hibernation factors. Nature. 2024; 626:1125–1132. PubMed PMC
Beckert B., Turk M., Czech A., Berninghausen O., Beckmann R., Ignatova Z., Plitzko J.M., Wilson D.N. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Nat. Microbiol. 2018; 3:1115–1121. PubMed
Flygaard R.K., Boegholm N., Yusupov M., Jenner L.B. Cryo-EM structure of the hibernating Thermus thermophilus 100S ribosome reveals a protein-mediated dimerization mechanism. Nat. Commun. 2018; 9:4179. PubMed PMC
Beckert B., Abdelshahid M., Schafer H., Steinchen W., Arenz S., Berninghausen O., Beckmann R., Bange G., Turgay K., Wilson D.N. Structure of the Bacillus subtilis hibernating 100S ribosome reveals the basis for 70S dimerization. EMBO J. 2017; 36:2061–2072. PubMed PMC
Franken L.E., Oostergetel G.T., Pijning T., Puri P., Arkhipova V., Boekema E.J., Poolman B., Guskov A. A general mechanism of ribosome dimerization revealed by single-particle cryo-electron microscopy. Nat. Commun. 2017; 8:722. PubMed PMC
Khusainov I., Vicens Q., Ayupov R., Usachev K., Myasnikov A., Simonetti A., Validov S., Kieffer B., Yusupova G., Yusupov M. et al. . Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. EMBO J. 2017; 36:2073–2087. PubMed PMC
Matzov D., Aibara S., Basu A., Zimmerman E., Bashan A., Yap M.F., Amunts A., Yonath A.E. The cryo-EM structure of hibernating 100S ribosome dimer from pathogenic Staphylococcus aureus. Nat. Commun. 2017; 8:723. PubMed PMC
Ortiz J.O., Brandt F., Matias V.R., Sennels L., Rappsilber J., Scheres S.H., Eibauer M., Hartl F.U., Baumeister W. Structure of hibernating ribosomes studied by cryoelectron tomography in vitro and in situ. J. Cell Biol. 2010; 190:613–621. PubMed PMC
Kato T., Yoshida H., Miyata T., Maki Y., Wada A., Namba K. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy. Structure. 2010; 18:719–724. PubMed
Wells J.N., Buschauer R., Mackens-Kiani T., Best K., Kratzat H., Berninghausen O., Becker T., Gilbert W., Cheng J., Beckmann R. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. PLoS Biol. 2020; 18:e3000780. PubMed PMC
Ben-Shem A., Garreau de Loubresse N., Melnikov S., Jenner L., Yusupova G., Yusupov M. The structure of the eukaryotic ribosome at 3.0 A resolution. Science. 2011; 334:1524–1529. PubMed
McLaren M., Conners R., Isupov M.N., Gil-Diez P., Gambelli L., Gold V.A.M., Walter A., Connell S.R., Williams B., Daum B. CryoEM reveals that ribosomes in microsporidian spores are locked in a dimeric hibernating state. Nat. Microbiol. 2023; 8:1834–1845. PubMed PMC
McCutcheon J.P., Agrawal R.K., Philips S.M., Grassucci R.A., Gerchman S.E., Clemons W.M., Ramakrishnan V., Frank J. Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. U.S.A. 1999; 96:4301–4306. PubMed PMC
Petrelli D., LaTeana A., Garofalo C., Spurio R., Pon C.L., Gualerzi C.O. Translation initiation factor IF3: two domains, five functions, one mechanism. EMBO J. 2001; 20:4560–4569. PubMed PMC
Hussain T., Llacer J.L., Wimberly B.T., Kieft J.S., Ramakrishnan V. Large-scale movements of IF3 and tRNA during bacterial translation initiation. Cell. 2016; 167:133–144. PubMed PMC
Fabbretti A., Pon C.L., Hennelly S.P., Hill W.E., Lodmell J.S., Gualerzi C.O. The real-time path of translation factor IF3 onto and off the ribosome. Mol. Cell. 2007; 25:285–296. PubMed
Milon P., Konevega A.L., Gualerzi C.O., Rodnina M.V. Kinetic checkpoint at a late step in translation initiation. Mol. Cell. 2008; 30:712–720. PubMed
MacDougall D.D., Gonzalez R.L. Jr Translation initiation factor 3 regulates switching between different modes of ribosomal subunit joining. J. Mol. Biol. 2015; 427:1801–1818. PubMed PMC
Kolupaeva V.G., Unbehaun A., Lomakin I.B., Hellen C.U., Pestova T.V. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA. 2005; 11:470–486. PubMed PMC
des Georges A., Dhote V., Kuhn L., Hellen C.U., Pestova T.V., Frank J., Hashem Y. Structure of mammalian eIF3 in the context of the 43S preinitiation complex. Nature. 2015; 525:491–495. PubMed PMC
Yaeshima C., Murata N., Ishino S., Sagawa I., Ito K., Uchiumi T. A novel ribosome-dimerization protein found in the hyperthermophilic archaeon Pyrococcus furiosus using ribosome-associated proteomics. Biochem. Biophys. Res. Commun. 2022; 593:116–121. PubMed
Shiraishi M., Ishino S., Yamagami T., Egashira Y., Kiyonari S., Ishino Y. A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Res. 2015; 43:2853–2863. PubMed PMC
Iacobucci C., Gotze M., Ihling C.H., Piotrowski C., Arlt C., Schafer M., Hage C., Schmidt R., Sinz A. A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat. Protoc. 2018; 13:2864–2889. PubMed
Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005; 152:36–51. PubMed
Zheng S.Q., Palovcak E., Armache J.P., Verba K.A., Cheng Y., Agard D.A. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods. 2017; 14:331–332. PubMed PMC
Grant T., Rohou A., Grigorieff N. cisTEM, user-friendly software for single-particle image processing. eLife. 2018; 7:e35383. PubMed PMC
Rohou A., Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 2015; 192:216–221. PubMed PMC
Grigorieff N. Frealign: an exploratory tool for single-particle cryo-EM. Methods Enzymol. 2016; 579:191–226. PubMed PMC
Armache J.P., Anger A.M., Marquez V., Franckenberg S., Frohlich T., Villa E., Berninghausen O., Thomm M., Arnold G.J., Beckmann R. et al. . Promiscuous behaviour of archaeal ribosomal proteins: implications for eukaryotic ribosome evolution. Nucleic Acids Res. 2013; 41:1284–1293. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed
Heymann J.B., Belnap D.M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 2007; 157:3–18. PubMed
Kazan R., Bourgeois G., Lazennec-Schurdevin C., Larquet E., Mechulam Y., Coureux P.D., Schmitt E. Role of aIF5B in archaeal translation initiation. Nucleic Acids Res. 2022; 50:6532–6548. PubMed PMC
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Zidek A., Potapenko A. et al. . Highly accurate protein structure prediction with AlphaFold. Nature. 2021; 596:583–589. PubMed PMC
Emsley P., Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004; 60:2126–2132. PubMed
Liebschner D., Afonine P.V., Baker M.L., Bunkoczi G., Chen V.B., Croll T.I., Hintze B., Hung L.W., Jain S., McCoy A.J. et al. . Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019; 75:861–877. PubMed PMC
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B. et al. . MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 2018; 27:293–315. PubMed PMC
Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., Ferrin T.E. UCSF ChimeraX: tools for structure building and analysis. Protein Sci. 2023; 32:e4792. PubMed PMC
Krissinel E., Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007; 372:774–797. PubMed
Agirre J., Atanasova M., Bagdonas H., Ballard C.B., Basle A., Beilsten-Edmands J., Borges R.J., Brown D.G., Burgos-Marmol J.J., Berrisford J.M. et al. . The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D Struct. Biol. 2023; 79:449–461. PubMed PMC
de Vienne D.M. Lifemap: exploring the entire tree of life. PLoS Biol. 2016; 14:e2001624. PubMed PMC
Letunic I., Bork P. Interactive Tree Of Life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016; 44:W242–W245. PubMed PMC
Johnson M., Zaretskaya I., Raytselis Y., Merezhuk Y., McGinnis S., Madden T.L. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008; 36:W5–W9. PubMed PMC
The UniProt Consortium UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Res. 2023; 51:D523–D531. PubMed PMC
van Kempen M., Kim S.S., Tumescheit C., Mirdita M., Lee J., Gilchrist C.L.M., Soding J., Steinegger M. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 2024; 42:243–246. PubMed PMC
Zhang C., Zheng W., Mortuza S.M., Li Y., Zhang Y. DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-homology proteins. Bioinformatics. 2020; 36:2105–2112. PubMed PMC
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PubMed PMC
Ban N., Beckmann R., Cate J.H., Dinman J.D., Dragon F., Ellis S.R., Lafontaine D.L., Lindahl L., Liljas A., Lipton J.M. et al. . A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol. 2014; 24:165–169. PubMed PMC
Yusupov M.M., Yusupova G.Z., Baucom A., Lieberman K., Earnest T.N., Cate J.H., Noller H.F. Crystal structure of the ribosome at 5.5 Å resolution. Science. 2001; 292:883–896. PubMed
Khusainov I., Fatkhullin B., Pellegrino S., Bikmullin A., Liu W.T., Gabdulkhakov A., Shebel A.A., Golubev A., Zeyer D., Trachtmann N. et al. . Mechanism of ribosome shutdown by RsfS in Staphylococcus aureus revealed by integrative structural biology approach. Nat. Commun. 2020; 11:1656. PubMed PMC
Gartmann M., Blau M., Armache J.P., Mielke T., Topf M., Beckmann R. Mechanism of eIF6-mediated inhibition of ribosomal subunit joining. J. Biol. Chem. 2010; 285:14848–14851. PubMed PMC
Weis F., Giudice E., Churcher M., Jin L., Hilcenko C., Wong C.C., Traynor D., Kay R.R., Warren A.J. Mechanism of eIF6 release from the nascent 60S ribosomal subunit. Nat. Struct. Mol. Biol. 2015; 22:914–919. PubMed PMC
Madoori P.K., Agustiandari H., Driessen A.J., Thunnissen A.M. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition. EMBO J. 2009; 28:156–166. PubMed PMC
Belitsky B.R., Sonenshein A.L. Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proc. Natl. Acad. Sci. U.S.A. 2013; 110:7026–7031. PubMed PMC
Coureux P.D., Lazennec-Schurdevin C., Bourcier S., Mechulam Y., Schmitt E. Cryo-EM study of an archaeal 30S initiation complex gives insights into evolution of translation initiation. Commun. Biol. 2020; 3:58. PubMed PMC
Hentschel J., Burnside C., Mignot I., Leibundgut M., Boehringer D., Ban N. The complete structure of the Mycobacteriumsmegmatis 70S ribosome. Cell Rep. 2017; 20:149–160. PubMed
Trosch R., Willmund F. The conserved theme of ribosome hibernation: from bacteria to chloroplasts of plants. Biol. Chem. 2019; 400:879–893. PubMed
Juszkiewicz S., Chandrasekaran V., Lin Z., Kraatz S., Ramakrishnan V., Hegde R.S. ZNF598 is a quality control sensor of collided ribosomes. Mol. Cell. 2018; 72:469–481. PubMed PMC
Narita M., Denk T., Matsuo Y., Sugiyama T., Kikuguchi C., Ito S., Sato N., Suzuki T., Hashimoto S., Machova I. et al. . A distinct mammalian disome collision interface harbors K63-linked polyubiquitination of uS10 to trigger hRQT-mediated subunit dissociation. Nat. Commun. 2022; 13:6411. PubMed PMC
Flugel T., Schacherl M., Unbehaun A., Schroeer B., Dabrowski M., Burger J., Mielke T., Sprink T., Diebolder C.A., Guillen Schlippe Y.V. et al. . Transient disome complex formation in native polysomes during ongoing protein synthesis captured by cryo-EM. Nat. Commun. 2024; 15:1756. PubMed PMC
Barandun J., Hunziker M., Vossbrinck C.R., Klinge S. Evolutionary compaction and adaptation visualized by the structure of the dormant microsporidian ribosome. Nat. Microbiol. 2019; 4:1798–1804. PubMed PMC
Yi S.H., Petrychenko V., Schliep J.E., Goyal A., Linden A., Chari A., Urlaub H., Stark H., Rodnina M.V., Adio S. et al. . Conformational rearrangements upon start codon recognition in human 48S translation initiation complex. Nucleic Acids Res. 2022; 50:5282–5298. PubMed PMC
Zavialov A.V., Hauryliuk V.V., Ehrenberg M. Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G. Mol. Cell. 2005; 18:675–686. PubMed
Becker T., Franckenberg S., Wickles S., Shoemaker C.J., Anger A.M., Armache J.P., Sieber H., Ungewickell C., Berninghausen O., Daberkow I. et al. . Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature. 2012; 482:501–506. PubMed PMC
Rappaport H.B., Oliverio A.M. Lessons from extremophiles: functional adaptations and genomic innovations across the eukaryotic tree of life. Genome Biol. Evol. 2024; 16:evae160. PubMed PMC
Kobayashi K., Saito K., Ishitani R., Ito K., Nureki O. Structural basis for translation termination by archaeal RF1 and GTP-bound EF1alpha complex. Nucleic Acids Res. 2012; 40:9319–9328. PubMed PMC
Kobayashi K., Kikuno I., Kuroha K., Saito K., Ito K., Ishitani R., Inada T., Nureki O. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1alpha complex. Proc. Natl. Acad. Sci. U.S.A. 2010; 107:17575–17579. PubMed PMC
Grunberger F., Schmid G., El Ahmad Z., Fenk M., Vogl K., Reichelt R., Hausner W., Urlaub H., Lenz C., Grohmann D. Uncovering the temporal dynamics and regulatory networks of thermal stress response in a hyperthermophile using transcriptomics and proteomics. mBio. 2023; 14:e0217423. PubMed PMC