Modelling of online shopping behavior in the Czech online environment
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39813304
PubMed Central
PMC11734907
DOI
10.1371/journal.pone.0308725
PII: PONE-D-24-04584
Knihovny.cz E-zdroje
- MeSH
- chování spotřebitelů * statistika a číselné údaje MeSH
- dospělí MeSH
- internet * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- obchod * MeSH
- průzkumy a dotazníky MeSH
- teoretické modely * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The online environment has its own specifics, which shape the specific behavior of all market subjects, both customers and companies that trade electronically. The aim of the paper is to create, quantify and verify a conceptual comprehensive model of relationships between determinants that influence consumers when shopping online. The impetus for the conducted research was the discovery of the non-existence of a comprehensive model of online shopping behavior that reflects the specifics of the online environment. The main research method is the method of online questioning in the form of a questionnaire survey among a selected group of Czech respondents (n = 926) shopping online with the aim of evaluating the determinants of online shopping behavior. The results of the questionnaire survey are subsequently used to build a comprehensive model of online shopping behavior, which was statistically compiled and verified using the PLS-SEM method, which, based on statistical data, estimates the size and quality of the links between the measured (manifest) and assumed unmeasured (latent) variables. The results show that the selected factors (31 factors) explain up to 82.53% of the variability of the total variance. The results of the correlation analysis of the factors confirmed that the defined factors are not mutually dependent and that in the comprehensive model the factors are not only identified but also statistically significant. The results also confirmed that the correlation of e.g. psychological factors are stronger than dependence on other investigated factors in the comprehensive model of online shopping behavior. The research clearly showed that the key factors for customers when shopping online are Security and risk elimination (SE), together with the Online distribution and logistics (OD) and Online payments (OP). Impulsive online shopping was identified by customers as the least important factor. The validated model provides a comprehensive explanation of the current phenomenon of online shopping that integrates and extends previous studies identifying behavioral models of online shopping behavior.
Zobrazit více v PubMed
Informační společnost v číslech ‐ 2022. In: Informační společnost v číslech ‐ 2022 [Internet]. [cited 2 Jun 2024]. Available: https://www.czso.cz/csu/czso/informacni-spolecnost-v-cislech-2022.
European E-commerce Report 2022. EuroCommerce for retail and wholesale. Amterdam University of Applied Sciences. In: Asociace pro elektronickou komerci [Internet]. 5 Jun 2022. Available: https://www.apek.cz/archiv-dokumentu?filters_document%5Bcategories%5D%5B0%5D=1.
Statistiky e-commerce 2023. In: Asociace pro elektronickou komerci [Internet]. 15 Jun 2023. Available: https://www.apek.cz/dokumenty-a-videa.
E-commerce Study (Survey) 2020 and 2021. In: Asociace pro elektronickou komerci [Internet]. 5 Jun 2022. Available: https://www.apek.cz/dokumenty-a-videa.
Statistiky e-commerce 2022. In: Asociace pro elektronickou komerci [Internet]. 5 Jun 2022. Available: https://www.apek.cz/dokumenty-a-videa.
Morgan JP. Global e-commerce trends report. 2022. Jun. Available: https://www.jpmorgan.com/content/dam/jpm/treasury-services/documents/global-e-commerce-trends-report.pdf.
Venkatesh V, Morris MG, Davis GB, Davis FD. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003;27: 425–478. doi: 10.2307/30036540 DOI
Venkatesh V, Thong J, Xu X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012;36: 157–178. doi: 10.2307/41410412 DOI
Ijaz M, Rhee J. Constituents and Consequences of Online-Shopping in Sustainable E-Business: An Experimental Study of Online-Shopping Malls. Sustainability. 2018;10: 3756. doi: 10.3390/su10103756 DOI
Svatošová V. Strategické řízení v elektronickém obchodování. Mendelova univerzita v Brně. Brno; 2021.
Svatošová V. Changes in Online Shopping Behavior in the Czech Republic During the COVID-19 Crisis. J Compet. 2022;14: 155–175. doi: 10.7441/joc.2022.01.09 DOI
Svatošová V. Modelování online nákupního chování na B2C e-commerce trzích. Thesis. 2023.
Sreeram A, Kesharwani A, Desai S. Factors affecting satisfaction and loyalty in online grocery shopping: an integrated model. J Indian Bus Res. 2017;9: 107–132. doi: 10.1108/JIBR-01-2016-0001 DOI
Eryiğit C, Fan Y. The Effects of Convenience and Risk on E-Loyalty through the Mediating Role of E-Service Quality: A Comparison for China and Turkey. J Int Consum Mark. 2021;33: 613–626. doi: 10.1080/08961530.2021.1879704 DOI
Bhat SA, Islam SB, Lone UM. Antecedents and consequences of online buying behavior: a mediation study. South Asian J Bus Stud. 2021;12: 54–78. doi: 10.1108/SAJBS-07-2020-0223 DOI
Wilson N, Keni K, Tan PHP. The Role of Perceived Usefulness and Perceived Ease-of-Use toward Satisfaction and Trust which Influence Computer Consumers’ Loyalty in China. Gadjah Mada Int J Bus. 2021;23: 262–294. doi: 10.22146/gamaijb.32106 DOI
Venkatesh V, Speier-Pero C, Schuetz S. Why do people shop online? A comprehensive framework of consumers’ online shopping intentions and behaviors. Inf Technol People. 2022;35: 1590–1620. doi: 10.1108/ITP-12-2020-0867 DOI
Davis FD. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989;13: 319–339. doi: 10.2307/249008 DOI
Taylor S, Todd P. Assessing IT usage: the role of prior experience. MIS Q. 1995;19: 561–570. doi: 10.2307/249633 DOI
Taylor S, Todd PA. Understanding Information Technology Usage: A Test of Competing Models. Inf Syst Res. 1995;6: 144–176. doi: 10.1287/isre.6.2.144 DOI
Chisnall PM. Consumer behaviour. 3rd ed. London: McGraw-Hill; 1995.
Tatomir A, McDermott C, Bensabat J, Class H, Edlmann K, Taherdangkoo R, et al.. Conceptual model development using a generic Features, Events, and Processes (FEP) database for assessing the potential impact of hydraulic fracturing on groundwater aquifers. Advances in Geosciences. Copernicus GmbH; 2018. pp. 185–192. doi: 10.5194/adgeo-45-185-2018 DOI
Zheng X, Lee M, Cheung CMK. Examining e-loyalty towards online shopping platforms: The role of coupon proneness and value consciousness. Internet Res. 2017;27: 709–726. doi: 10.1108/IntR-01-2016-0002 DOI
Momani AM, Jamous MM, Hilles SMS. Technology Acceptance Theories: Review and Classification. Int J Cyber Behav Psychol Learn IJCBPL. 2017;7: 1–14. doi: 10.4018/IJCBPL.2017040101 DOI
Davis FD. A technology acceptance model for empirically testing new end-user information systems: theory and results. Thesis, Massachusetts Institute of Technology. 1985. Available: https://dspace.mit.edu/handle/1721.1/15192.
Ajzen I, Fishbein M. Understanding attitudes and predicting social behavior. Pbk. ed. Englewood Cliffs, N.J.: Prentice-Hall; 1980.
Davis F, Bagozzi R, Warshaw P. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag Sci. 1989;35: 982–1003. doi: 10.1287/mnsc.35.8.982 DOI
Venkatesh V. Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Inf Syst Res. 2000;11: 342–365. doi: 10.1287/isre.11.4.342.11872 DOI
Taylor S, Todd P. Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. Int J Res Mark. 1995;12: 137–155. doi: 10.1016/0167-8116(94)00019-K DOI
Javadi MHM, Dolatabadi HR, Nourbakhsh M, Poursaeedi A, Asadollahi A. An Analysis of Factors Affecting on Online Shopping Behavior of Consumers. Int J Mark Stud. 2012;4: p81. doi: 10.5539/ijms.v4n5p81 DOI
Hernández B, Jiménez J, Martín MJ. Customer behavior in electronic commerce: The moderating effect of e-purchasing experience. J Bus Res. 2010;63: 964–971. doi: 10.1016/j.jbusres.2009.01.019 DOI
Roca J, José García J, José de la Vega J. The importance of perceived trust, security and privacy in online trading systems. Inf Manag Comput Secur. 2009;17: 96–113. doi: 10.1108/09685220910963983 DOI
Richard M-O, Chebat J-C, Yang Z, Putrevu S. A proposed model of online consumer behavior: Assessing the role of gender. J Bus Res. 2010;63: 926–934. doi: 10.1016/j.jbusres.2009.02.027 DOI
Mandal B, Sur D. Conceptualizing a Model for Online Shopping Intension: A Literature Review. 2017;6: 109–112.
Kim CH, Amaeshi K, Harris S, Suh C-J. CSR and the national institutional context: The case of South Korea. J Bus Res. 2013;66: 2581–2591. doi: 10.1016/j.jbusres.2012.05.015 DOI
Chaffey D, Ellis-Chadwick F, Mayer R, Johnston K. Internet Marketing: Strategy, Implementation and Practice. New York: Pearson Education; 2006.
Pilík M. On-line Shopping on B2C Markets in the Czech Republic. J Compet. 2012;4: 36–49. doi: 10.7441/joc.2012.04.03 DOI
Pilík M. Internet a jeho vliv na online nákupní chování zákazníků na B2C e-commerce trzích. Zlín: Univerzita Tomáše Bati ve Zlíně; 2015.
Babić Rosario A, Sotgiu F, Valck K, Bijmolt T. The Effect of Electronic Word of Mouth on Sales: A Meta-Analytic Review of Platform, Product, and Metric Factors. J Mark Res. 2016;53: 297–318. doi: 10.1509/jmr.14.0380 DOI
McCole P, Ramsey E, Williams J. Trust considerations on attitudes towards online purchasing: The moderating effect of privacy and security concerns. J Bus Res. 2010;63: 1018–1024. doi: 10.1016/j.jbusres.2009.02.025 DOI
Kumar A. Consumer Switching from Traditional to Electronic Channel: A Literature Analysis. Pac Bus Rev Int. 2018;10: 79–84.
Wareham J, Zheng J, Straub D. Critical Themes in Electronic Commerce Research: A Meta-Analysis. JIT. 2005;20: 1–19. doi: 10.1057/palgrave.jit.2000034 DOI
Maity M, Dass M. Consumer decision-making across modern and traditional channels: E-commerce, m-commerce, in-store. Decis Support Syst. 2014;61: 34–46. doi: 10.1016/j.dss.2014.01.008 DOI
Ashraf A, Thongpapanl N, Auh S. The Application of the Technology Acceptance Model Under Different Cultural Contexts: The Case of Online Shopping Adoption. J Int Mark. 2014;22: 68–93. doi: 10.1509/jim.14.0065 DOI
Al-Debei M, Akroush M, Ashouri M. Consumer attitudes towards online shopping The effects of trust, perceived benefits, and perceived web quality. Internet Res. 2015;25: 707–733. doi: 10.1108/IntR-05-2014-0146 DOI
Dang VT, Pham TL. An empirical investigation of consumer perceptions of online shopping in an emerging economy: Adoption theory perspective. Asia Pac J Mark Logist. 2018;30: 952–971. doi: 10.1108/APJML-01-2018-0038 DOI
Safeena R, Date H, Hundewale N, Kammani DrA. Combination of TAM and TPB in Internet banking adoption. Int J Comput Theory Eng. 2013;5: 146–150. doi: 10.7763/IJCTE.2013.V5.665 DOI
Venkatesh V, Davis F. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag Sci. 2000;46: 186–204. doi: 10.1287/mnsc.46.2.186.11926 DOI
Sheng T, Liu C. An empirical study on the effect of e‐service quality on online customer satisfaction and loyalty. Nankai Bus Rev Int. 2010;1: 273–283. doi: 10.1108/20408741011069205 DOI
Iglesias-Pradas S, Pascual-Miguel F, Hernández-García Á, Chaparro-Peláez J. Barriers and drivers for non-shoppers in B2C e-commerce: A latent class exploratory analysis. Comput Hum Behav. 2013;29: 314–322. doi: 10.1016/j.chb.2012.01.024 DOI
Gupta MP, Dubey DA. E-Commerce-Study of Privacy, Trust and Security from Consumer ‘ s Perspective. 2016. Available: https://www.semanticscholar.org/paper/E-Commerce-Study-of-Privacy-%2C-Trust-and-Security-%E2%80%99-Gupta-Dubey/8ebf2eaa095af4b5e9333f677d3ba3bcdb65ea4f.
Cui F, Lin D, Qu H. The impact of perceived security and consumer innovativeness on e-loyalty in online travel shopping. J Travel Tour Mark. 2018;35: 819–834. doi: 10.1080/10548408.2017.1422452 DOI
Gefen D, Karahanna E, Straub D. Trust and TAM in Online Shopping: An Integrated Model. MIS Q. 2003;27: 51–90. doi: 10.2307/30036519 DOI
Ribadu MB, Wan Ab. Rahman WN. An integrated approach towards Sharia compliance E-commerce trust. Appl Comput Inform. 2019;15: 1–6. doi: 10.1016/j.aci.2017.09.002 DOI
Hasslinger A, Hodzic S, Opazo C. Consumer Behaviour in Online Shopping. Krisanstad University, Department of Business Studies; 2007.
Fernández-Bonilla F, Gijón C, De la Vega B. E-commerce in Spain: Determining factors and the importance of the e-trust. Telecommun Policy. 2022;46: 102280. doi: 10.1016/j.telpol.2021.102280 DOI
Nguyen N, Leclerc A, Leblanc G. The Mediating Role of Customer Trust on Customer Loyalty. J Serv Sci Manag. 2013;6: 96–109. doi: 10.4236/jssm.2013.61010 DOI
Garepasha A, Aali S, Bafandeh Zendeh AR, Iranzadeh S. Relationship dynamics in customer loyalty to online banking services. J Islam Mark. 2020;12: 830–863. doi: 10.1108/JIMA-09-2019-0183 DOI
Bucko J, Kakalejčík L, Ferencová M. Online shopping: Factors that affect consumer purchasing behaviour. Wright LT, editor. Cogent Bus Manag. 2018;5: 1535751. doi: 10.1080/23311975.2018.1535751 DOI
Pilík M. Selected factors influencing customers’ behaviour in e-commerce on B2C markets in the Czech Republic. Academic Conferences Ltd.; 2013. Available: https://publikace.k.utb.cz/handle/10563/1004046.
Pilík M, Juřičkova E, Kwarteng M. On-line shopping behaviour in the Czech Republic under the digital transformation of economy. Econ Ann-ХХI. 2017;165: 119–123. doi: 10.21003/ea.V165-24 DOI
Akbar S, James PT. Consumers’ attitude towards online shopping: Factors influencing employees of crazy domains to shop online. J Manag Mark Res. 2014;14: 1–11.
Nittala R. Factors Influencing Online Shopping Behavior of Urban Consumers in India: Int J Online Mark. 2015;5: 38–50. doi: 10.4018/IJOM.2015010103 DOI
Agyapong HA. Exploring the influential factors of online purchase. Thesis, Vaasan Ammattikorkeakoulu University of Applied Sciences, Business Economics and Tourism International Business. 2017.
Venkatesh V, Bala H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis Sci ‐ Decis SCI. 2008;39: 273–315. doi: 10.1111/j.1540-5915.2008.00192.x DOI
Davis FD, Bagozzi RP, Warshaw PR. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace1. J Appl Soc Psychol. 1992;22: 1111–1132. doi: 10.1111/j.1559-1816.1992.tb00945.x DOI
Toufaily E, Ricard L, Perrien J. Customer loyalty to a commercial website: Descriptive meta-analysis of the empirical literature and proposal of an integrative model. J Bus Res. 2013;66: 1436–1447. doi: 10.1016/j.jbusres.2012.05.011 DOI
Safa NS, Ismail MA. A customer loyalty formation model in electronic commerce. Econ Model. 2013;35: 559–564. doi: 10.1016/j.econmod.2013.08.011 DOI
Hansen E, Jonsson E. E-loyalty in fashion e-commerce: an investigation in how to create e-loyalty. 2013. Available: www.diva-portal.org/smash/get/diva2:626624/FULLTEXT01.pdf.
Hamideh OSA, Yousif ASH, Alhmeidiveen MS, Alnsor NS. E-loyalty in marketing: Implications of e-customer focus. Int J Bus Econ Manag Res. 2018;9: 36–49.
El-Haddadeh R, Weerakkody V, Peng V. Social networking services Adoption in Corporate Communication: The Case of China. J Enterp Inf Manag. 2012;25: 559–575. doi: 10.1108/17410391211272838 DOI
Kim SC, Yoon D, Han EK. Antecedents of mobile app usage among smartphone users. J Mark Commun. 2016;22: 653–670. doi: 10.1080/13527266.2014.951065 DOI
Fang Y. Beyond the Usefulness of Branded Applications: Insights from Consumer–Brand Engagement and Self‐construal Perspectives. Psychol Mark. 2017;34: 40–58. doi: 10.1002/mar.20972 DOI
Patro CS. Consumer Attitude and Loyalty in Online Shopping Environments: A Study of Facets Driving Shoppers Towards E-Stores. Int J Cyber Behav Psychol Learn. 2017;7: 57–72. doi: 10.4018/IJCBPL.2017070105 DOI
Nov O, Ye C. Users’ personality and perceived ease of use of digital libraries: The case for resistance to change. J Am Soc Inf Sci Technol. 2008;59: 845–851. doi: 10.1002/asi.20800 DOI
Perea y Monsuwé T, Dellaert BGC, de Ruyter K. What drives consumers to shop online? A literature review. Int J Serv Ind Manag. 2004;15: 102–121. doi: 10.1108/09564230410523358 DOI
Palvia P. The role of trust in e-commerce relational exchange: A unified model. Inf Manage. 2009;46: 213–220. doi: 10.1016/j.im.2009.02.003 DOI
Chen Y, Yan X, Fan W, Gordon M. The joint moderating role of trust propensity and gender on consumers’ online shopping behavior. Comput Hum Behav. 2015;43: 272–283. doi: 10.1016/j.chb.2014.10.020 DOI
Hernández B, Jiménez J, Martín-De Hoyos J. Age, gender and income: do they really moderate online shopping behaviour? Online Inf Rev. 2011;35: 113–133. doi: 10.1108/14684521111113614 DOI
Hsu M-H, Chuang L-W, Hsu C-S. Understanding online shopping intention: the roles of four types of trust and their antecedents. Internet Res. 2014;24: 332–352. doi: 10.1108/IntR-01-2013-0007 DOI
Ajzen I. From Intentions to Actions: A Theory of Planned Behavior. In: Kuhl J, Beckmann J, editors. Action Control: From Cognition to Behavior. Berlin, Heidelberg: Springer; 1985. pp. 11–39. doi: 10.1007/978-3-642-69746-3_2 DOI
Ham M, Jeger M, Frajman Ivković A. The role of subjective norms in forming the intention to purchase green food. Econ Res-Ekon Istraživanja. 2015;28: 738–748. doi: 10.1080/1331677X.2015.1083875 DOI
Armitage CJ, Conner M. Efficacy of the Theory of Planned Behaviour: a meta-analytic review. Br J Soc Psychol. 2001;40: 471–499. doi: 10.1348/014466601164939 PubMed DOI
Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50: 179–211. doi: 10.1016/0749-5978(91)90020-T DOI
Fishbein M, Ajzen I. Predicting and Changing Behavior: The Reasoned Action Approach. Predicting and Changing Behavior: The Reasoned Action Approach. 2010. doi: 10.4324/9780203838020 DOI
Noar S, Zimmerman R. Health Behavior Theory and Cumulative Knowledge Regarding Health Behaviors: Are We Moving in the Right Direction? Health Educ Res. 2005;20: 275–90. doi: 10.1093/her/cyg113 PubMed DOI
Fishbein M, Ajzen I. Belief, attitude, intention and behaviour: An introduction to theory and research. 1975.
Suryandari RT, Paswan AK. Online customer service and retail type-product congruence. J Retail Consum Serv. 2014;21: 69–76. doi: 10.1016/j.jretconser.2013.08.004 DOI
Duarte P, Costa e Silva S, Ferreira MB. How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. J Retail Consum Serv. 2018;44: 161–169.
Iyer GR, Blut M, Xiao SH, Grewal D. Impulse buying: a meta-analytic review. J Acad Mark Sci. 2020;48: 384–404. doi: 10.1007/s11747-019-00670-w DOI
Zhang K, Xu H, Zhao S, Yu Y. Online reviews and impulse buying behavior: the role of browsing and impulsiveness. Internet Res. 2018;28: 522–543. doi: 10.1108/IntR-12-2016-0377 DOI
Chen Y, Lu Y, Gupta S, Pan Z. Understanding “window” shopping and browsing experience on social shopping website: An empirical investigation. Inf Technol People. 2019;33: 1124–1148. doi: 10.1108/ITP-12-2017-0424 DOI
Rohm AJ, Swaminathan V. A typology of online shoppers based on shopping motivations. J Bus Res. 2004;57: 748–757. doi: 10.1016/S0148-2963(02)00351-X DOI
Koufaris M. Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Inf Syst Res. 2002;13: 205–223. doi: 10.1287/isre.13.2.205.83 DOI
Wu W, Huang V, Chen X, Davison R, Hua Z. Social value and online social shopping intention: the moderating role of experience. Inf Technol People. 2018;31: 688–711. doi: 10.1108/ITP-10-2016-0236 DOI
Lian J-W, Yen DC. Online shopping drivers and barriers for older adults: Age and gender differences. Comput Hum Behav. 2014;37: 133–143. doi: 10.1016/j.chb.2014.04.028 DOI
Yaldiz LM, Truxillo DM, Bodner T, Hammer LB. Do resources matter for employee stress? It depends on how old you are. J Vocat Behav. 2018;107: 182–194. doi: 10.1016/j.jvb.2018.04.005 DOI
Lin X, Featherman M, Brooks SL, Hajli N. Exploring Gender Differences in Online Consumer Purchase Decision Making: An Online Product Presentation Perspective. Inf Syst Front. 2019;21: 1187–1201. doi: 10.1007/s10796-018-9831-1 DOI
Burke R. Technology and the Customer Interface: What Consumers Want in the Physical and Virtual Store. J Acad Mark Sci ‐ J ACAD MARK SCI. 2002;30: 411–432. doi: 10.1177/009207002236914 DOI
Chang J, Samuel N. Internet Shopper Demographics and Buying Behaviour in Australia. J Am Acad Bus. 2004;5: 171–176.
Baldevbhai P. A study on consumer demographic profile influences on online shopping behaviour. Indian J Appl Res. 2015;5: 212–214.
Ajzen I. Perceived Behavioral Control, Self‐Efficacy, Locus of Control, and the Theory of Planned Behavior. J Appl Soc Psychol. 2002;32: 665–683. doi: 10.1111/j.1559-1816.2002.tb00236.x DOI
Reichel J. Kapitoly metodologie sociálních výzkumů. Grada Publishing. Praha; 2009.
Sample size calculator. In: Raosoft [Internet]. 2022. Available: http://www.raosoft.com/samplesize.html.
Warren KF. In Defense Of Public Opinion Polling. 1st edition. Routledge; 2018.
Cohen N, Arieli T. Field research in conflict environments: Methodological challenges and snowball sampling. J Peace Res. 2011;48: 423–435. doi: 10.1177/0022343311405698 DOI
Pereira HG, Salgueiro M de F, Rita P. Online purchase determinants of loyalty: The mediating effect of satisfaction in tourism. J Retail Consum Serv. 2016;30: 279–291. doi: 10.1016/j.jretconser.2016.01.003 DOI
Olsson UH, Foss T, Troye SV, Howell RD. The Performance of ML, GLS, and WLS Estimation in Structural Equation Modeling Under Conditions of Misspecification and Nonnormality. Struct Equ Model Multidiscip J. 2000;7: 557–595. doi: 10.1207/S15328007SEM0704_3 DOI
Shah R, Goldstein SM. Use of structural equation modeling in operations management research: Looking back and forward. J Oper Manag. 2006;24: 148–169. doi: 10.1016/j.jom.2005.05.001 DOI
Wit E, Heuvel E van den, Romeijn J-W. ‘All models are wrong …’: an introduction to model uncertainty. Stat Neerlandica. 2012;66: 217–236. doi: 10.1111/j.1467-9574.2012.00530.x DOI
Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables and measurement error. J Mark Res. 1981;18: 39–50. doi: 10.2307/3151312 DOI
Babin B, Hair J, Boles J. Publishing Research in Marketing Journals Using Structural Equation Modeling. J Mark Theory Pract. 2008;16: 279–286. doi: 10.2753/MTP1069-6679160401 DOI
Chaffey D, Ellis-Chadwick F, Mayer R, Johnston K. Internet Marketing: Strategy, Implementation and Practice. Pearson Education; 2009.
Bagozzi R. The Legacy of the Technology Acceptance Model and a Proposal for a Paradigm Shift. J Assoc Inf Syst. 2007;8: 244–254. doi: 10.17705/1jais.00122 DOI
Legris P, Ingham J, Collerette P. Why do people use information technology? A critical review of the technology acceptance model. Inf Manage. 2003;40: 191–204. doi: 10.1016/S0378-7206(01)00143-4 DOI
Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50: 179–211. doi: 10.1016/0749-5978(91)90020-T DOI
Ajzen I. Perceived Behavioral Control, Self‐Efficacy, Locus of Control, and the Theory of Planned Behavior. J Appl Soc Psychol. 2002;32: 665–683. doi: 10.1111/j.1559-1816.2002.tb00236.x DOI