Limited value of current and new in silico predicted oocyst-specific proteins of Toxoplasma gondii for source-attributing serology

. 2023 ; 2 () : 1292322. [epub] 20231127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39816825

Toxoplasma gondii is a zoonotic parasite infecting all warm-blooded animals, including humans. The contribution of environmental contamination by T. gondii oocysts to infections is understudied. The aim of the current work was to explore T. gondii serology as a means of attributing the source of infection using a robust stepwise approach. We identified in silico thirty-two promising oocyst-specific antigens from T. gondii ´omics data, recombinantly expressed and purified them and validated whether serology based on these proteins could discriminate oocyst- from tissue cyst-driven experimental infections. For this, three well-characterized serum panels, sampled from 0 to 6 weeks post-infection, from pigs and sheep experimentally infected with T. gondii oocysts or tissue cysts, were used. Candidate proteins were initially screened by Western blot with sera from pigs or sheep, infected for different times, either with oocysts or tissue cysts, as well as non-infected animals. Only the recombinant proteins TgCCp5A and TgSR1 provoked seroconversion upon infection and appeared to discriminate between oocyst- and tissue cyst-driven infections with pig sera. They were subsequently used to develop an enzyme-linked immunosorbent assay test for pigs. Based on this assay and Western blot analyses, a lack of stage specificity and low antigenicity was observed with all pig sera. The same was true for proteins TgERP, TgSporoSAG, TgOWP1 and TgOWP8, previously described as source-attributing antigens, when analyzed using the whole panels of sera. We conclude that there is currently no antigen that allows the discrimination of T. gondii infections acquired from either oocysts or tissue cysts by serological tests. This work provides robust new knowledge that can inform further research and development toward source-attributing T. gondii serology.

Zobrazit více v PubMed

Álvarez García G., Davidson R., Jokelainen P., Klevar S., Spano F., Seeber F. (2021). Identification of Oocyst-Driven Toxoplasma gondii Infections in Humans and Animals through Stage-Specific Serology-Current Status and Future Perspectives. Microorganisms 9 (11), 2346. doi: 10.3390/microorganisms9112346 PubMed DOI PMC

Arranz-Solís D., Carvalheiro C. G., Zhang E. R., Grigg M. E., Saeij J. P. J. (2021). Toxoplasma GRA peptide-specific serologic fingerprints discriminate among major strains causing toxoplasmosis. Front. Cell Infect. Microbiol. 11. doi: 10.3389/fcimb.2021.621738 PubMed DOI PMC

Arranz-Solís D., Cordeiro C., Young L. H., Dardé M. L., Commodaro A. G., Grigg M. E., et al. . (2019). Serotyping of Toxoplasma gondii infection using peptide membrane arrays. Front. Cell Infect. Microbiol. 9. doi: 10.3389/fcimb.2019.00408 PubMed DOI PMC

Arranz-Solís D., Warschkau D., Fabian B. T., Seeber F., Saeij J. P. J. (2023). Late Embryogenesis Abundant Proteins Contribute to the Resistance of Toxoplasma gondii Oocysts against Environmental Stresses. mBio 14 (2), e0286822. doi: 10.1128/mbio.02868-22 PubMed DOI PMC

Balbino L. S., Bernardes J. C., Ladeia W. A., Martins F. D. C., Nino B. S. L., Mitsuka-Breganó R., et al. . (2022). Epidemiological study of toxoplasmosis outbreaks in Brazil. Transbound Emerg. Dis. 69 (4), 2021–2028. doi: 10.1111/tbed.14214 PubMed DOI

Batisti Biffignandi G., Vola A., Sassera D., Najafi-Fard S., Gomez Morales M. A., Brunetti E., et al. . (2023). Antigen discovery by bioinformatics analysis and peptide microarray for the diagnosis of cystic echinococcosis. PloS Negl. Trop. Dis. 17 (4), e0011210. doi: 10.1371/journal.pntd.0011210 PubMed DOI PMC

Burrells A., Opsteegh M., Pollock K. G., Alexander C. L., Chatterton J., Evans R., et al. . (2016). The prevalence and genotypic analysis of Toxoplasma gondii from individuals in Scotland 2006-2012. Parasit. Vectors 9 (1), 324. doi: 10.1186/s13071-016-1610-6 PubMed DOI PMC

Cassini A., Colzani E., Pini A., Mangen M. J., Plass D., McDonald S. A., et al. . (2018). Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries 2009 to 2013. Euro. Surveill. 23 (16):17–00454. doi: 10.2807/1560-7917.Es.2018.23.16.17-00454 PubMed DOI PMC

Cia G., Pucci F., Rooman M. (2023). Critical review of conformational B-cell epitope prediction methods. Brief Bioinform. 24 (1). doi: 10.1093/bib/bbac567 PubMed DOI

Clifford J. N., Høie M. H., Deleuran S., Peters B., Nielsen M., Marcatili P. (2022). BepiPred-3.0: Improved B-cell epitope prediction using protein language models. Protein Sci. 31 (12), e4497. doi: 10.1002/pro.4497 PubMed DOI PMC

Collatz M., Mock F., Barth E., Hölzer M., Sachse K., Marz M. (2021). EpiDope: a deep neural network for linear B-cell epitope prediction. Bioinformatics 37 (4), 448–455. doi: 10.1093/bioinformatics/btaa773 PubMed DOI

Cook A. J., Gilbert R. E., Buffolano W., Zufferey J., Petersen E., Jenum P. A., et al. . (2000). Sources of Toxoplasma infection in pregnant women: European multicentre case-control study. European Research Network on Congenital Toxoplasmosis. Bmj 321 (7254), 142–147. doi: 10.1136/bmj.321.7254.142 PubMed DOI PMC

Crawford J., Lamb E., Wasmuth J., Grujic O., Grigg M. E., Boulanger M. J. (2010). Structural and functional characterization of SporoSAG: a SAG2-related surface antigen from Toxoplasma gondii . J. Biol. Chem. 285 (16), 12063–12070. doi: 10.1074/jbc.M109.054866 PubMed DOI PMC

Dámek F. (2023). Toxoplasma gondii in pork production: a stable to table approach (Doctoral dissertation) (Faculty of Health, Doctoral School of Life and Health Sciences: University of Paris-Est Créteil; ).

Delgado Betancourt E., Hamid B., Fabian B. T., Klotz C., Hartmann S., Seeber F. (2019). From entry to early dissemination-Toxoplasma gondii's initial encounter with its host. Front. Cell Infect. Microbiol. 9. doi: 10.3389/fcimb.2019.00046 PubMed DOI PMC

Döşkaya M., Caner A., Can H., İz S. G., Gedik Y., Döşkaya A. D., et al. . (2014). Diagnostic value of a rec-ELISA using Toxoplasma gondii recombinant SporoSAG, BAG1, and GRA1 proteins in murine models infected orally with tissue cysts and oocysts. PloS One 9 (9), e108329. doi: 10.1371/journal.pone.0108329 PubMed DOI PMC

Döşkaya M., Liang L., Jain A., Can H., Gülçe İz S., Felgner P. L., et al. . (2018). Discovery of new Toxoplasma gondii antigenic proteins using a high throughput protein microarray approach screening sera of murine model infected orally with oocysts and tissue cysts. Parasit. Vectors 11 (1), 393. doi: 10.1186/s13071-018-2934-1 PubMed DOI PMC

Dubey J. P. (2021. a). Toxoplasmosis of Animals and Humans (Boca Raton: CRC Press; ).

Dubey J. P. (2021. b). Outbreaks of clinical toxoplasmosis in humans: five decades of personal experience, perspectives and lessons learned. Parasit. Vectors 14 (1), 263. doi: 10.1186/s13071-021-04769-4 PubMed DOI PMC

EFSA Panel on Biological Hazards. Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bolton D., Bover-Cid S., et al. . (2018). Public health risks associated with food-borne parasites. EFSA. J. 16 (12), e05495. doi: 10.2903/j.efsa.2018.5495 PubMed DOI PMC

Fabian B. T., Lepenies B., Schares G., Dubey J. P., Spano F., Seeber F. (2021). Expanding the known repertoire of C-type lectin receptors binding to Toxoplasma gondii oocysts using a modified high-resolution immunofluorescence assay. mSphere 6 (2), e01341–e01320. doi: 10.1128/mSphere.01341-20 PubMed DOI PMC

Felgner J., Juarez S., Hung C., Liang L. I., Jain A., Döşkaya M., et al. . (2015). Identification of Toxoplasma gondii antigens associated with different types of infection by serum antibody profiling. Parasitology 142 (6), 827–838. doi: 10.1017/s0031182014001978 PubMed DOI PMC

Friesema I. H. M., Hofhuis A., Hoek-van Deursen D., Jansz A. R., Ott A., van Hellemond J. J., et al. . (2023). Risk factors for acute toxoplasmosis in the Netherlands. Epidemiol. Infect. 151, e95. doi: 10.1017/s0950268823000808 PubMed DOI PMC

Fritz H. M., Bowyer P. W., Bogyo M., Conrad P. A., Boothroyd J. C. (2012. a). Proteomic analysis of fractionated Toxoplasma oocysts reveals clues to their environmental resistance. PloS One 7 (1), e29955. doi: 10.1371/journal.pone.0029955 PubMed DOI PMC

Fritz H. M., Buchholz K. R., Chen X., Durbin-Johnson B., Rocke D. M., Conrad P. A., et al. . (2012. b). Transcriptomic analysis of Toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PloS One 7 (2), e29998. doi: 10.1371/journal.pone.0029998 PubMed DOI PMC

Galanis K. A., Nastou K. C., Papandreou N. C., Petichakis G. N., Pigis D. G., Iconomidou V. A. (2021). Linear B-cell epitope prediction for in silico vaccine design: A performance review of methods available via command-line interface. Int. J. Mol. Sci. 22 (6):3210. doi: 10.3390/ijms22063210 PubMed DOI PMC

Gomez-Marin J. E., de-la-Torre A. (2020). “Ocular disease due to Toxoplasma gondii ,” in Toxoplasma gondii: The Model Apicomplexan - Perspectives and Methods, 3rd. Eds. Weiss L. M., Kim K. (Cambridge, Massachusetts, the United States: Academic Press; ), 229–291.

Hald T., Aspinall W., Devleesschauwer B., Cooke R., Corrigan T., Havelaar A. H., et al. . (2016). World Health organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: A structured expert elicitation. PloS One 11 (1), e0145839. doi: 10.1371/journal.pone.0145839 PubMed DOI PMC

Harb O. S., Roos D. S. (2020). ToxoDB: functional genomics resource for Toxoplasma and related organisms. Methods Mol. Biol. 2071, 27–47. doi: 10.1007/978-1-4939-9857-9_2 PubMed DOI

Hebditch M., Carballo-Amador M. A., Charonis S., Curtis R., Warwicker J. (2017). Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinf. (Oxford. England). 33 (19), 3098–3100. doi: 10.1093/bioinformatics/btx345 PubMed DOI PMC

Hill D., Coss C., Dubey J. P., Wroblewski K., Sautter M., Hosten T., et al. . (2011). Identification of a sporozoite-specific antigen from Toxoplasma gondii . J. Parasitol. 97 (2), 328–337. doi: 10.1645/ge-2782.1 PubMed DOI PMC

Høie M. H., Gade F. S., Johansen J. M., Würtzen C., Winther O., Nielsen M., et al. . (2023). DiscoTope-3.0 - Improved B-cell epitope prediction using AlphaFold2 modeling and inverse folding latent representations. bioRxiv 2023, 2002.2005.527174. doi: 10.1101/2023.02.05.527174 DOI

Jespersen M. C., Peters B., Nielsen M., Marcatili P. (2017). BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45 (W1), W24–W29. doi: 10.1093/nar/gkx346 PubMed DOI PMC

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. . (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596 (7873), 583–589. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC

Klein S., Stern D., Seeber F. (2020). Expression of in vivo biotinylated recombinant antigens SAG1 and SAG2A from Toxoplasma gondii for improved seroepidemiological bead-based multiplex assays. BMC Biotechnol. 20 (1), 53–14. doi: 10.1186/s12896-020-00646-7 PubMed DOI PMC

Largo-de la Torre A., Diezma-Díaz C., Calero-Bernal R., Atencia-Cibreiro G., Sánchez-Sánchez R., Ferre I., et al. . (2022). Archetypal type II and III Toxoplasma gondii oocysts induce different immune responses and clinical outcomes in experimentally infected piglets. Front. Immunol. 13. doi: 10.3389/fimmu.2022.1021556 PubMed DOI PMC

Liang L., Döşkaya M., Juarez S., Caner A., Jasinskas A., Tan X., et al. . (2011). Identification of potential serodiagnostic and subunit vaccine antigens by antibody profiling of toxoplasmosis cases in Turkey. Mol. Cell Proteomics 10 (7), M110.006916. doi: 10.1074/mcp.M110.006916 PubMed DOI PMC

Liang L., Felgner P. L. (2015). A systems biology approach for diagnostic and vaccine antigen discovery in tropical infectious diseases. Curr. Opin. Infect. Dis. 28 (5), 438–445. doi: 10.1097/qco.0000000000000193 PubMed DOI PMC

Liu X.-Y., Wang Z.-D., El-Ashram S., Liu Q. (2019). Toxoplasma gondii oocyst-driven infection in pigs, chickens and humans in northeastern China. BMC Vet. Res. 15 (1), 366–367. doi: 10.1186/s12917-019-2121-4 PubMed DOI PMC

López-Ureña N. M., Calero-Bernal R., González-Fernández N., Blaga R., Koudela B., Ortega-Mora L. M., et al. . (2023. a). Optimization of the most widely used serological tests for a harmonized diagnosis of Toxoplasma gondii infection in domestic pigs. Vet. Parasitol. 322, 110024. doi: 10.1016/j.vetpar.2023.110024 PubMed DOI

López-Ureña N. M., Calero-Bernal R., Vázquez-Calvo A., Sánchez-Sánchez R., Ortega-Mora L. M., Álvarez-García G. (2023. b). A comparative study of serological tests used in the diagnosis of Toxoplasma gondii infection in small ruminants evidenced the importance of cross-reactions for harmonizing diagnostic performance. Res. Vet. Sci. 165, 105052. doi: 10.1016/j.rvsc.2023.105052 PubMed DOI

López-Ureña N. M., Chaudhry U., Calero Bernal R., Cano Alsua S., Messina D., Evangelista F., et al. . (2022). Contamination of soil, water, fresh produce, and bivalve mollusks with Toxoplasma gondii oocysts: A systematic review. Microorganisms 10 (3):517. doi: 10.3390/microorganisms10030517 PubMed DOI PMC

MacRaild C. A., Richards J. S., Anders R. F., Norton R. S. (2016). Antibody recognition of disordered antigens. Structure 24 (1), 148–157. doi: 10.1016/j.str.2015.10.028 PubMed DOI

Maksimov P., Zerweck J., Maksimov A., Hotop A., Gross U., Pleyer U., et al. . (2012). Peptide microarray analysis of in silico-predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. Clin. Vaccine Immunol. 19 (6), 865–874. doi: 10.1128/cvi.00119-12 PubMed DOI PMC

Mangiavacchi B. M., Vieira F. P., Bahia-Oliveira L. M., Hill D. (2016). Salivary IgA against sporozoite-specific embryogenesis-related protein (TgERP) in the study of horizontally transmitted toxoplasmosis via T. gondii oocysts in endemic settings. Epidemiol. Infect. 144 (12), 2568–2577. doi: 10.1017/s0950268816000960 PubMed DOI PMC

Meng F., Wang C., Kurgan L. (2017). fDETECT webserver: fast predictor of propensity for protein production, purification, and crystallization. BMC Bioinf. 18 (1), 580. doi: 10.1186/s12859-017-1995-z PubMed DOI PMC

Newberry K. M., Colling A. (2021). Quality standards and guidelines for test validation for infectious diseases in veterinary laboratories. Rev. Sci. Tech. 40 (1), 227–237. doi: 10.20506/rst.40.1.3220 PubMed DOI

Pinto-Ferreira F., Caldart E. T., Pasquali A. K. S., Mitsuka-Breganó R., Freire R. L., Navarro I. T. (2019). Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg. Infect. Dis. 25 (12), 2177–2182. doi: 10.3201/eid2512.181565 PubMed DOI PMC

Piovesan D., Necci M., Escobedo N., Monzon A. M., Hatos A., Mičetić I., et al. . (2020). MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Res. 54, 26. doi: 10.1093/nar/gkaa1058 PubMed DOI PMC

Possenti A., Cherchi S., Bertuccini L., Pozio E., Dubey J. P., Spano F. (2010). Molecular characterisation of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localisation. Int. J. Parasitol. 40 (14), 1639–1649. doi: 10.1016/j.ijpara.2010.06.009 PubMed DOI

Radke J. R., Gubbels M. J., Jerome M. E., Radke J. B., Striepen B., White M. W. (2004). Identification of a sporozoite-specific member of the Toxoplasma SAG superfamily via genetic complementation. Mol. Microbiol. 52 (1), 93–105. doi: 10.1111/j.1365-2958.2003.03967.x PubMed DOI

Ricci A. D., Brunner M., Ramoa D., Carmona S. J., Nielsen M., Agüero F. (2021). APRANK: computational prioritization of antigenic proteins and peptides from complete pathogen proteomes. Front. Immunol. 12. doi: 10.3389/fimmu.2021.702552 PubMed DOI PMC

Salman D., Okuda L. H., Ueno A., Dautu G., Zhang F., Igarashi M. (2017). Evaluation of novel oocyst wall protein candidates of Toxoplasma gondii . Parasitol. Int. 66 (5), 643–651. doi: 10.1016/j.parint.2017.05.009 PubMed DOI

Sánchez-Sánchez R., Vázquez-Calvo Á., Fernández-Escobar M., Regidor-Cerrillo J., Benavides J., Gutiérrez J., et al. . (2021). Dynamics of Neospora caninum-associated abortions in a dairy sheep flock and results of a test-and-cull control programme. Pathogens 10 (11):1518. doi: 10.3390/pathogens10111518 PubMed DOI PMC

Santana S. S., Gebrim L. C., Carvalho F. R., Barros H. S., Barros P. C., Pajuaba A. C., et al. . (2015). CCp5A Protein from Toxoplasma gondii as a serological marker of oocyst-driven infections in humans and domestic animals. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.01305 PubMed DOI PMC

Uversky V. N., Van Regenmortel M. H. V. (2021). Mobility and disorder in antibody and antigen binding sites do not prevent immunochemical recognition. Crit. Rev. Biochem. Mol. Biol. 56 (2), 149–156. doi: 10.1080/10409238.2020.1869683 PubMed DOI

Vallejo R., Benavides J., Arteche-Villasol N., Sánchez-Sánchez R., Calero-Bernal R., Ferreras M. C., et al. . (2023). Experimental infection of sheep at mid-pregnancy with archetypal type II and type III Toxoplasma gondii isolates exhibited different phenotypic traits. Vet. Parasitol. 315, 109889. doi: 10.1016/j.vetpar.2023.109889 PubMed DOI

Vieira F. P., Alves Mda G., Martins L. M., Rangel A. L., Dubey J. P., Hill D., et al. . (2015). Waterborne toxoplasmosis investigated and analysed under hydrogeological assessment: new data and perspectives for further research. Mem. Inst. Oswaldo. Cruz. 110 (7), 929–935. doi: 10.1590/0074-02760150262 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...