• This record comes from PubMed

Relaxin mimetic in pulmonary hypertension associated with left heart disease: Design and rationale of Re-PHIRE

. 2025 Jun ; 12 (3) : 1956-1964. [epub] 20250120

Language English Country Great Britain, England Media print-electronic

Document type Clinical Trial Protocol, Journal Article

Grant support
AstraZeneca

AIMS: Despite receiving guideline-directed medical heart failure (HF) therapy, patients with pulmonary hypertension associated with left heart disease (PH-LHD) experience higher mortality and hospitalization rates than the general HF population. AZD3427 is a functionally selective, long-acting mimetic of relaxin, a hormone that has the potential to induce vasodilation and prevent fibrosis. In a phase 1b study conducted in patients with HF, AZD3427 demonstrated a favourable safety and pharmacokinetic profile. To address the unmet medical need in patients with PH-LHD in the context of HF, AZD3427 is currently under development as a potential treatment option. METHODS AND RESULTS: The Re-PHIRE study is a phase 2b, randomized, double-blind, placebo-controlled, multicentre, dose-ranging study to evaluate the effect of AZD3427 on a broad range of PH-LHD phenotypes. In total, 220 patients will be randomized to four treatment groups to receive a subcutaneous injection of AZD3427 or placebo every 2 weeks for 24 weeks. The primary endpoint of the study is the change in pulmonary vascular resistance in patients treated with AZD3427 versus placebo after 24 weeks of treatment. Key secondary endpoints include changes in mean pulmonary arterial pressure, pulmonary artery wedge pressure, systemic vascular resistance, 6-min walking distance, N-terminal pro B-type natriuretic peptide levels, echocardiographic parameters, and health-related quality of life (assessed by the Kansas City Cardiomyopathy Questionnaire). CONCLUSIONS: Re-PHIRE is the first study of a relaxin mimetic in patients with PH-LHD. The insights gained from the Re-PHIRE study are expected to inform the further development of AZD3427 in the PH-LHD population, including identifying the most suitable pulmonary hypertension and HF phenotypes for treatment.

2nd Department of Internal Medicine University of Toyama Toyama Japan

2nd Department of Medicine Charles University and General University Hospital Prague Czechia

Canadian VIGOUR Centre University of Alberta Edmonton Canada

Department of Cardiology Guangdong Cardiovascular Institute Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences Southern Medical University Guangzhou China

Department of Cardiology Pulmonology and Intensive Care Medicine Center for Molecular Medicine Cologne Medical Faculty University of Cologne Cologne Germany

Department of Cardiology Zuyderland Medical Center Heerlen The Netherlands

Department of Internal Medicine 2 Division of Cardiology Medical University of Vienna Vienna Austria

Department of Internal Medicine and Cardiology with the Centre for Management of Venous Thromboembolic Disease Medical University of Warsaw Warsaw Poland

Department of Medical Sciences Uppsala University Hospital Uppsala Sweden

Early Clinical Development Cardiovascular Renal and Metabolism BioPharmaceuticals R and D AstraZeneca Cambridge UK

Early Clinical Development Cardiovascular Renal and Metabolism BioPharmaceuticals R and D AstraZeneca Gothenburg Sweden

Early Clinical Development Cardiovascular Renal and Metabolism BioPharmaceuticals R and D AstraZeneca Warsaw Poland

Heart Failure and Transplantation Unit La Fe University and Polytechnic Hospital Valencia Spain

Heart Failure Program Yale School of Medicine New Haven Connecticut USA

Scottish National Advanced Heart Failure Service Golden Jubilee National Hospital Clydebank UK

The Heart Center Copenhagen University Hospital Rigshospitalet Copenhagen Denmark

University of Milan School of Medicine San Paolo University Hospital Milan Italy

See more in PubMed

Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022;43:3618–3731. doi:10.1093/eurheartj/ehac237 PubMed DOI

Guazzi M, Ghio S, Adir Y. Pulmonary hypertension in HFpEF and HFrEF: JACC review topic of the week. J Am Coll Cardiol 2020;76:1102–1111. doi:10.1016/j.jacc.2020.06.069 PubMed DOI

Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001;37:183–188. doi:10.1016/s0735-1097(00)01102-5 PubMed DOI

Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community‐based study. J Am Coll Cardiol 2009;53:1119–1126. doi:10.1016/j.jacc.2008.11.051 PubMed DOI PMC

Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1:290–299. doi:10.1016/j.jchf.2013.05.001 PubMed DOI

Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk‐Noordegraaf A, Vachiery JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016;37:942–954. doi:10.1093/eurheartj/ehv512 PubMed DOI PMC

Tampakakis E, Leary PJ, Selby VN, De Marco T, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail 2015;3:9–16. doi:10.1016/j.jchf.2014.07.010 PubMed DOI PMC

Angermann CE, Assmus B, Anker SD, Asselbergs FW, Brachmann J, Brett ME, et al., for the MEMS‐HF Investigators Pulmonary artery pressure‐guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European monitoring study for heart failure (MEMS‐HF). Eur J Heart Fail 2020;22:1891–1901. doi:10.1002/ejhf.1943 PubMed DOI

Givertz MM, Stevenson LW, Costanzo MR, Bourge RC, Bauman JG, Ginn G, et al., CHAMPION Trial Investigators Pulmonary artery pressure‐guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2017;70:1875–1886. doi:10.1016/j.jacc.2017.08.010 PubMed DOI

Ibe T, Wada H, Sakakura K, Ikeda N, Yamada Y, Sugawara Y, et al. Pulmonary hypertension due to left heart disease: the prognostic implications of diastolic pulmonary vascular pressure gradient. J Cardiol 2016;67:555–559. doi:10.1016/j.jjcc.2015.07.015 PubMed DOI

Maron BA, Brittain EL, Hess E, Waldo SW, Baron AE, Huang S, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020;8:873–884. doi:10.1016/S2213-2600(20)30317-9 PubMed DOI PMC

Quan R, Huang S, Pang L, Shen J, Wu W, Tang F, et al. Risk prediction in pulmonary hypertension due to chronic heart failure: incremental prognostic value of pulmonary hemodynamics. BMC Cardiovasc Disord 2022;22:56. doi:10.1186/s12872-022-02492-1 PubMed DOI PMC

Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol 2018;3:298–306. doi:10.1001/jamacardio.2018.0128 PubMed DOI PMC

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599–3726. doi:10.1093/eurheartj/ehab368 PubMed DOI

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2023. Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023. doi:10.1093/eurheartj/ehad195 PubMed DOI

Greene SJ, Bauersachs J, Brugts JJ, Ezekowitz JA, Filippatos G, Gustafsson F, et al. Management of worsening heart failure with reduced ejection fraction: JACC focus seminar 3/3. J Am Coll Cardiol 2023;82:559–571. doi:10.1016/j.jacc.2023.04.057 PubMed DOI

Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013;93:405–480. doi:10.1152/physrev.00001.2012 PubMed DOI

Deng A, Conrad K, Baylis C. Relaxin‐mediated renal vasodilation in the rat is associated with falls in glomerular blood pressure. Am J Physiol Regul Integr Comp Physiol 2018;314:R147–R152. doi:10.1152/ajpregu.00148.2017 PubMed DOI PMC

Devarakonda T, Salloum FN. Heart disease and relaxin: new actions for an old hormone. Trends Endocrinol Metab 2018;29:338–348. doi:10.1016/j.tem.2018.02.008 PubMed DOI PMC

Heeg MH, Koziolek MJ, Vasko R, Schaefer L, Sharma K, Muller GA, et al. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int 2005;68:96–109. doi:10.1111/j.1523-1755.2005.00384.x PubMed DOI

Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2017;174:933–949. doi:10.1111/bph.13523 PubMed DOI PMC

Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RAD, Denton KM, et al. The anti‐fibrotic actions of relaxin are mediated through AT(2) R‐associated protein phosphatases via RXFP1‐AT(2) R functional crosstalk in human cardiac myofibroblasts. FASEB J 2020;34:8217–8233. doi:10.1096/fj.201902506R PubMed DOI

Metra M, Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, et al., RELAX‐AHF‐2 Committees Investigators Effects of serelaxin in patients with acute heart failure. N Engl J Med 2019;381:716–726. doi:10.1056/NEJMoa1801291 PubMed DOI

Ponikowski P, Mitrovic V, Ruda M, Fernandez A, Voors AA, Vishnevsky A, et al. A randomized, double‐blind, placebo‐controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J 2014;35:431–441. doi:10.1093/eurheartj/eht459 PubMed DOI PMC

ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories . ATS statement: guidelines for the six‐minute walk test. Am J Respir Crit Care Med 2002;166:111–117. doi:10.1164/ajrccm.166.1.at1102 PubMed DOI

Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the Kansas City cardiomyopathy questionnaire: a new health status measure for heart failure. J Am Coll Cardiol 2000;35:1245–1255. doi:10.1016/s0735-1097(00)00531-3 PubMed DOI

Zelt JGE, Chaudhary KR, Cadete VJ, Mielniczuk LM, Stewart DJ. Medical therapy for heart failure associated with pulmonary hypertension. Circ Res 2019;124:1551–1567. doi:10.1161/CIRCRESAHA.118.313650 PubMed DOI

Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA, Berger RM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 2015;36:2565–2573. doi:10.1093/eurheartj/ehv336 PubMed DOI

Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase‐5 inhibition in a 1‐year study. Circulation 2011;124:164–174. doi:10.1161/CIRCULATIONAHA.110.983866 PubMed DOI

Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 2007;116:1555–1562. doi:10.1161/CIRCULATIONAHA.107.716373 PubMed DOI

Kramer T, Dumitrescu D, Gerhardt F, Orlova K, Ten Freyhaus H, Hellmich M, et al. Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post‐ and pre‐capillary pulmonary hypertension. Int J Cardiol 2019;283:152–158. doi:10.1016/j.ijcard.2018.12.078 PubMed DOI

Vachiery JL, Delcroix M, Al‐Hiti H, Efficace M, Hutyra M, Lack G, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J 2018;51. doi:10.1183/13993003.01886-2017 PubMed DOI

Schiffner R, Nistor M, Bischoff SJ, Matziolis G, Schmidt M, Lehmann T. Effects of human relaxin‐2 (serelaxin) on hypoxic pulmonary vasoconstriction during acute hypoxia in a sheep model. Hypoxia 2018;6:11–22. doi:10.2147/HP.S165092 PubMed DOI PMC

Schiffner R, Reiche J, Schmidt M, Jung C, Walther S, Irintchev A, et al. Pulmonary arterial compliance and pulmonary hemodynamic effects of serelaxin in a sheep model. Clin Hemorheol Microcirc 2017;66:219–229. doi:10.3233/CH-170269 PubMed DOI

Martin B, Vanderpool RR, Henry BL, Palma JB, Gabris B, Lai YC, et al. Relaxin inhibits ventricular arrhythmia and asystole in rats with pulmonary arterial hypertension. Front Cardiovasc Med 2021;8:668222. doi:10.3389/fcvm.2021.668222 PubMed DOI PMC

Ufnal M, Connolly K, Matsson E, Astrand M, Althage M, Pettersen D, et al. Safety, pharmacokinetics, and pharmacodynamics of AZD3427, a functionally selective long acting relaxin mimetic agonist of the RXFP1 receptor. ESC Heart Fail 2023; 24():183. doi:10.1002/ejhf.2927 DOI

Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, et al., Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double‐blind, randomized, placebo‐controlled, dose‐ranging hemodynamic study. Circulation 2013;128:502–511. doi:10.1161/CIRCULATIONAHA.113.001458 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...