Relaxin mimetic in pulmonary hypertension associated with left heart disease: Design and rationale of Re-PHIRE
Language English Country Great Britain, England Media print-electronic
Document type Clinical Trial Protocol, Journal Article
Grant support
AstraZeneca
PubMed
39829393
PubMed Central
PMC12055356
DOI
10.1002/ehf2.15203
Knihovny.cz E-resources
- Keywords
- Heart failure, Left heart disease, Pulmonary hypertension, Pulmonary vascular resistance, Relaxin,
- MeSH
- Vascular Resistance drug effects MeSH
- Double-Blind Method MeSH
- Clinical Trials, Phase II as Topic MeSH
- Middle Aged MeSH
- Humans MeSH
- Multicenter Studies as Topic MeSH
- Hypertension, Pulmonary * drug therapy physiopathology etiology MeSH
- Randomized Controlled Trials as Topic MeSH
- Relaxin * analogs & derivatives MeSH
- Aged MeSH
- Heart Failure * complications physiopathology drug therapy MeSH
- Dose-Response Relationship, Drug MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial Protocol MeSH
- Names of Substances
- Relaxin * MeSH
AIMS: Despite receiving guideline-directed medical heart failure (HF) therapy, patients with pulmonary hypertension associated with left heart disease (PH-LHD) experience higher mortality and hospitalization rates than the general HF population. AZD3427 is a functionally selective, long-acting mimetic of relaxin, a hormone that has the potential to induce vasodilation and prevent fibrosis. In a phase 1b study conducted in patients with HF, AZD3427 demonstrated a favourable safety and pharmacokinetic profile. To address the unmet medical need in patients with PH-LHD in the context of HF, AZD3427 is currently under development as a potential treatment option. METHODS AND RESULTS: The Re-PHIRE study is a phase 2b, randomized, double-blind, placebo-controlled, multicentre, dose-ranging study to evaluate the effect of AZD3427 on a broad range of PH-LHD phenotypes. In total, 220 patients will be randomized to four treatment groups to receive a subcutaneous injection of AZD3427 or placebo every 2 weeks for 24 weeks. The primary endpoint of the study is the change in pulmonary vascular resistance in patients treated with AZD3427 versus placebo after 24 weeks of treatment. Key secondary endpoints include changes in mean pulmonary arterial pressure, pulmonary artery wedge pressure, systemic vascular resistance, 6-min walking distance, N-terminal pro B-type natriuretic peptide levels, echocardiographic parameters, and health-related quality of life (assessed by the Kansas City Cardiomyopathy Questionnaire). CONCLUSIONS: Re-PHIRE is the first study of a relaxin mimetic in patients with PH-LHD. The insights gained from the Re-PHIRE study are expected to inform the further development of AZD3427 in the PH-LHD population, including identifying the most suitable pulmonary hypertension and HF phenotypes for treatment.
2nd Department of Internal Medicine University of Toyama Toyama Japan
2nd Department of Medicine Charles University and General University Hospital Prague Czechia
Canadian VIGOUR Centre University of Alberta Edmonton Canada
Department of Cardiology Zuyderland Medical Center Heerlen The Netherlands
Department of Internal Medicine 2 Division of Cardiology Medical University of Vienna Vienna Austria
Department of Medical Sciences Uppsala University Hospital Uppsala Sweden
Heart Failure and Transplantation Unit La Fe University and Polytechnic Hospital Valencia Spain
Heart Failure Program Yale School of Medicine New Haven Connecticut USA
Scottish National Advanced Heart Failure Service Golden Jubilee National Hospital Clydebank UK
The Heart Center Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
University of Milan School of Medicine San Paolo University Hospital Milan Italy
See more in PubMed
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, et al. 2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022;43:3618–3731. doi:10.1093/eurheartj/ehac237 PubMed DOI
Guazzi M, Ghio S, Adir Y. Pulmonary hypertension in HFpEF and HFrEF: JACC review topic of the week. J Am Coll Cardiol 2020;76:1102–1111. doi:10.1016/j.jacc.2020.06.069 PubMed DOI
Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol 2001;37:183–188. doi:10.1016/s0735-1097(00)01102-5 PubMed DOI
Lam CS, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community‐based study. J Am Coll Cardiol 2009;53:1119–1126. doi:10.1016/j.jacc.2008.11.051 PubMed DOI PMC
Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1:290–299. doi:10.1016/j.jchf.2013.05.001 PubMed DOI
Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk‐Noordegraaf A, Vachiery JL. Left ventricular heart failure and pulmonary hypertension. Eur Heart J 2016;37:942–954. doi:10.1093/eurheartj/ehv512 PubMed DOI PMC
Tampakakis E, Leary PJ, Selby VN, De Marco T, Cappola TP, Felker GM, et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail 2015;3:9–16. doi:10.1016/j.jchf.2014.07.010 PubMed DOI PMC
Angermann CE, Assmus B, Anker SD, Asselbergs FW, Brachmann J, Brett ME, et al., for the MEMS‐HF Investigators Pulmonary artery pressure‐guided therapy in ambulatory patients with symptomatic heart failure: the CardioMEMS European monitoring study for heart failure (MEMS‐HF). Eur J Heart Fail 2020;22:1891–1901. doi:10.1002/ejhf.1943 PubMed DOI
Givertz MM, Stevenson LW, Costanzo MR, Bourge RC, Bauman JG, Ginn G, et al., CHAMPION Trial Investigators Pulmonary artery pressure‐guided management of patients with heart failure and reduced ejection fraction. J Am Coll Cardiol 2017;70:1875–1886. doi:10.1016/j.jacc.2017.08.010 PubMed DOI
Ibe T, Wada H, Sakakura K, Ikeda N, Yamada Y, Sugawara Y, et al. Pulmonary hypertension due to left heart disease: the prognostic implications of diastolic pulmonary vascular pressure gradient. J Cardiol 2016;67:555–559. doi:10.1016/j.jjcc.2015.07.015 PubMed DOI
Maron BA, Brittain EL, Hess E, Waldo SW, Baron AE, Huang S, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020;8:873–884. doi:10.1016/S2213-2600(20)30317-9 PubMed DOI PMC
Quan R, Huang S, Pang L, Shen J, Wu W, Tang F, et al. Risk prediction in pulmonary hypertension due to chronic heart failure: incremental prognostic value of pulmonary hemodynamics. BMC Cardiovasc Disord 2022;22:56. doi:10.1186/s12872-022-02492-1 PubMed DOI PMC
Vanderpool RR, Saul M, Nouraie M, Gladwin MT, Simon MA. Association between hemodynamic markers of pulmonary hypertension and outcomes in heart failure with preserved ejection fraction. JAMA Cardiol 2018;3:298–306. doi:10.1001/jamacardio.2018.0128 PubMed DOI PMC
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021;42:3599–3726. doi:10.1093/eurheartj/ehab368 PubMed DOI
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, et al. 2023. Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023. doi:10.1093/eurheartj/ehad195 PubMed DOI
Greene SJ, Bauersachs J, Brugts JJ, Ezekowitz JA, Filippatos G, Gustafsson F, et al. Management of worsening heart failure with reduced ejection fraction: JACC focus seminar 3/3. J Am Coll Cardiol 2023;82:559–571. doi:10.1016/j.jacc.2023.04.057 PubMed DOI
Bathgate RA, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013;93:405–480. doi:10.1152/physrev.00001.2012 PubMed DOI
Deng A, Conrad K, Baylis C. Relaxin‐mediated renal vasodilation in the rat is associated with falls in glomerular blood pressure. Am J Physiol Regul Integr Comp Physiol 2018;314:R147–R152. doi:10.1152/ajpregu.00148.2017 PubMed DOI PMC
Devarakonda T, Salloum FN. Heart disease and relaxin: new actions for an old hormone. Trends Endocrinol Metab 2018;29:338–348. doi:10.1016/j.tem.2018.02.008 PubMed DOI PMC
Heeg MH, Koziolek MJ, Vasko R, Schaefer L, Sharma K, Muller GA, et al. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int 2005;68:96–109. doi:10.1111/j.1523-1755.2005.00384.x PubMed DOI
Sarwar M, Du XJ, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system. Br J Pharmacol 2017;174:933–949. doi:10.1111/bph.13523 PubMed DOI PMC
Wang C, Pinar AA, Widdop RE, Hossain MA, Bathgate RAD, Denton KM, et al. The anti‐fibrotic actions of relaxin are mediated through AT(2) R‐associated protein phosphatases via RXFP1‐AT(2) R functional crosstalk in human cardiac myofibroblasts. FASEB J 2020;34:8217–8233. doi:10.1096/fj.201902506R PubMed DOI
Metra M, Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, et al., RELAX‐AHF‐2 Committees Investigators Effects of serelaxin in patients with acute heart failure. N Engl J Med 2019;381:716–726. doi:10.1056/NEJMoa1801291 PubMed DOI
Ponikowski P, Mitrovic V, Ruda M, Fernandez A, Voors AA, Vishnevsky A, et al. A randomized, double‐blind, placebo‐controlled, multicentre study to assess haemodynamic effects of serelaxin in patients with acute heart failure. Eur Heart J 2014;35:431–441. doi:10.1093/eurheartj/eht459 PubMed DOI PMC
ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories . ATS statement: guidelines for the six‐minute walk test. Am J Respir Crit Care Med 2002;166:111–117. doi:10.1164/ajrccm.166.1.at1102 PubMed DOI
Green CP, Porter CB, Bresnahan DR, Spertus JA. Development and evaluation of the Kansas City cardiomyopathy questionnaire: a new health status measure for heart failure. J Am Coll Cardiol 2000;35:1245–1255. doi:10.1016/s0735-1097(00)00531-3 PubMed DOI
Zelt JGE, Chaudhary KR, Cadete VJ, Mielniczuk LM, Stewart DJ. Medical therapy for heart failure associated with pulmonary hypertension. Circ Res 2019;124:1551–1567. doi:10.1161/CIRCRESAHA.118.313650 PubMed DOI
Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA, Berger RM, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 2015;36:2565–2573. doi:10.1093/eurheartj/ehv336 PubMed DOI
Guazzi M, Vicenzi M, Arena R, Guazzi MD. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase‐5 inhibition in a 1‐year study. Circulation 2011;124:164–174. doi:10.1161/CIRCULATIONAHA.110.983866 PubMed DOI
Lewis GD, Shah R, Shahzad K, Camuso JM, Pappagianopoulos PP, Hung J, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation 2007;116:1555–1562. doi:10.1161/CIRCULATIONAHA.107.716373 PubMed DOI
Kramer T, Dumitrescu D, Gerhardt F, Orlova K, Ten Freyhaus H, Hellmich M, et al. Therapeutic potential of phosphodiesterase type 5 inhibitors in heart failure with preserved ejection fraction and combined post‐ and pre‐capillary pulmonary hypertension. Int J Cardiol 2019;283:152–158. doi:10.1016/j.ijcard.2018.12.078 PubMed DOI
Vachiery JL, Delcroix M, Al‐Hiti H, Efficace M, Hutyra M, Lack G, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J 2018;51. doi:10.1183/13993003.01886-2017 PubMed DOI
Schiffner R, Nistor M, Bischoff SJ, Matziolis G, Schmidt M, Lehmann T. Effects of human relaxin‐2 (serelaxin) on hypoxic pulmonary vasoconstriction during acute hypoxia in a sheep model. Hypoxia 2018;6:11–22. doi:10.2147/HP.S165092 PubMed DOI PMC
Schiffner R, Reiche J, Schmidt M, Jung C, Walther S, Irintchev A, et al. Pulmonary arterial compliance and pulmonary hemodynamic effects of serelaxin in a sheep model. Clin Hemorheol Microcirc 2017;66:219–229. doi:10.3233/CH-170269 PubMed DOI
Martin B, Vanderpool RR, Henry BL, Palma JB, Gabris B, Lai YC, et al. Relaxin inhibits ventricular arrhythmia and asystole in rats with pulmonary arterial hypertension. Front Cardiovasc Med 2021;8:668222. doi:10.3389/fcvm.2021.668222 PubMed DOI PMC
Ufnal M, Connolly K, Matsson E, Astrand M, Althage M, Pettersen D, et al. Safety, pharmacokinetics, and pharmacodynamics of AZD3427, a functionally selective long acting relaxin mimetic agonist of the RXFP1 receptor. ESC Heart Fail 2023; 24():183. doi:10.1002/ejhf.2927 DOI
Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, et al., Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double‐blind, randomized, placebo‐controlled, dose‐ranging hemodynamic study. Circulation 2013;128:502–511. doi:10.1161/CIRCULATIONAHA.113.001458 PubMed DOI