Essential oil and furanosesquiterpenes from myrrh oleo-gum resin: a breakthrough in mosquito vector management
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
202274BK9L
Ministero dell'Istruzione, dell'Università e della Ricerca
FW06010376
Technology agency of the Czech Republic
PubMed
39832119
PubMed Central
PMC11753448
DOI
10.1007/s13659-024-00492-6
PII: 10.1007/s13659-024-00492-6
Knihovny.cz E-zdroje
- Klíčová slova
- Aedes aegypti, Anopheles spp., Commiphora myrrha, Arbovirus vector, Bioinsecticide,
- Publikační typ
- časopisecké články MeSH
Mosquitoes (Diptera: Culicidae) are vectors of various pathogens of public health concern and replacing conventional insecticides remains a challenge. In this regard, natural products represent valuable sources of potential insecticidal compounds, thus increasingly attracting research interest. Commiphora myrrha (T.Nees) Engl. (Burseraceae) is a medicinal plant whose oleo-gum resin is used in food, cosmetics, fragrances, and pharmaceuticals. Herein, the larvicidal potential of its essential oil (EO) was assessed on four mosquito species (Aedes albopictus Skuse, Aedes aegypti L., Anopheles gambiae Giles and Anopheles stephensi Liston), with LC50 values ranging from 4.42 to 16.80 μg/mL. The bio-guided EO fractionation identified furanosesquiterpenes as the main larvicidal compounds. A GC-MS-driven untargeted metabolomic analysis revealed 32 affected metabolic pathways in treated larvae. The EO non-target toxicity on Daphnia magna Straus (LC50 = 4.51 μL/L) and its cytotoxicity on a human kidney cell line (HEK293) (IC50 of 14.38 μg/mL) were also assessed. This study shows the potential of plant products as innovative insecticidal agents and lays the groundwork for the possible exploitation of C. myrrha EO in sustainable approaches for mosquito management.
Crop Research Institute Drnovska 507 161 06 Prague Czech Republic
Instituto de Física Universidad de Antioquia UdeA Calle 70 No 52 21 050010 Medellín Colombia
Zobrazit více v PubMed
Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Front Public Health. 2021;9:1–10. 10.3389/fpubh.2021.715759. PubMed DOI PMC
Benelli G, Wilke AB, Beier JC. PubMed DOI
Pustijanac E, Buršić M, Millotti G, Paliaga P, Iveša N, Cvek M. Tick-borne bacterial diseases in Europe: threats to public health. Eur J Clin Microbiol Infect Dis. 2024. 10.1007/s10096-024-04836-5. PubMed DOI
Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91. 10.1146/annurev.ento.45.1.371. PubMed DOI
Haddi K, Nauen R, Benelli G, Guedes RNC. Global perspectives on insecticide resistance in agriculture and public health. Entomol Gen. 2023;43:495–500. 10.1127/entomologia/2023/2186. DOI
Modafferi A, Giunti G, Benelli G, Campolo O. Ecological costs of botanical nano-insecticides. Curr Opin Environ Sci Health. 2024;42: 100579. 10.1016/j.coesh.2024.100579. DOI
Dolara P, Corte B, Ghelardini C, Pugliese AM, Cerbai E, Menichetti S, Nostro AL. Local anaesthetic, antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med. 2000;66(04):356–8. 10.1055/s-2000-8532. PubMed DOI
Abdul-Ghani RA, Loutfy N, Hassan A. Myrrh and trematodoses in Egypt: an overview of safety, efficacy and effectiveness profiles. Parasitol Internat. 2009;58(3):210–4. 10.1016/j.parint.2009.04.006. PubMed DOI
Batiha GES, Wasef L, Teibo JO, Shaheen HM, Zakariya AM, Akinfe OA, Teibo TKA, Al-kuraishy HM, Al-Garbee AI, Alexiou A, Papadakis M. PubMed DOI PMC
Leung AY, Foster S. Encyclopedia of common natural ingredients (used in food, drugs, and cosmetics). Hoboken: A John Wiley & Sons Inc.; 2003. p. 366–7.
Lubbe A, Verpoorte R. Cultivation of medicinal and aromatic plants for specialty industrial materials. Ind Crops Prod. 2011;34(1):785–801. 10.1016/j.indcrop.2011.01.019. DOI
Nomicos EY. Myrrh: medical marvel or myth of the magi? Holist Nurs Pract. 2007;21(6):308–23. 10.1097/01.HNP.0000298616.32846.34. PubMed DOI
Wahba TF, Aly HM, Hassan NA. The antifeedant properties of bio-oil from DOI
Zhu Y, Wu T, Hu Q, He W, Zheng Y, Xie Y, Rao Q, Liu X. Plant essential oils: dual action of toxicity and egg-laying inhibition on PubMed DOI PMC
Dekebo A, Dagne E, Sterner O. Furanosesquiterpenes from PubMed DOI
Marongiu B, Piras A, Porcedda S, Scorciapino A. Chemical composition of the essential oil and supercritical CO2 extract of PubMed DOI
Morteza-Semnani K, Saeedi M. Constituents of the essential oil of DOI
Baldovini N, Tomi F, Casanova J. Identification and quantitative determination of furanodiene, a heat‐sensitive compound, in essential oil by PubMed
Van den Dool H, Krat PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr. 1963;2:463–71. PubMed DOI
Adams DRP. Identification of essential oil components by gas chromatography/. 2005.
NIST N. Mass Spectral Library (NIST/EPA/NIH). 2005.
Mondello L. FFNSC 2: flavors and fragrances of natural and synthetic compounds, mass spectral database. Software. 2011.
Maggi F, Barboni L, Papa F, Caprioli G, Ricciutelli M, Sagratini G, Vittori S. A forgotten vegetable ( PubMed DOI
https://jadebloom.com/media/wysiwyg/myrrh-gcms.pdf 2017. Accessed on 16 Aug 2024.
Brieskorn CH, Noble P. Two furanoeudesmanes from the essential oil of myrrh. Phytochem. 1983;22(1):187–9. 10.1016/S0031-9422(00)80085-0. DOI
Pavela R, Pavoni L, Bonacucina G, Cespi M, Kavallieratos NG, Cappellacci L, Petrelli R, Maggi F, Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J Pest Sci. 2019;92:909–21. 10.1007/s10340-018-01076-3. DOI
Weyerstahl P, Marschall-Weyerstahl H, Christiansen C, Oguntimein BO, Adeoye AO. Volatile constituents of PubMed DOI
Alanazi NAH, Alamri AA, Mashlawi AM, Almuzaini N, Mohamed G, Salama SA. Gas chromatography-mass spectrometry chemical profiling of commiphora myrrha resin extracts and evaluation of larvicidal, antioxidant, and cytotoxic activities. Molecules. 2024;29:1778. 10.3390/molecules29081778. PubMed DOI PMC
Baranitharan M, Dhanasekaran S. Mosquito larvicidal properties of
Baranitharan M, Dhanasekaran S, Gokulakrishnan J, Mahesh Babu S, Thushimenan S. Nagapattinam medicinal plants against the dengue fever mosquito,
Mkangara M, Chacha M, Kazyoba PE. Larvicidal potential of
Muturi EJ, Hay WT, Doll KM, Ramirez JL, Selling G. Insecticidal activity of PubMed DOI
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2015;76:174–87. 10.1016/j.indcrop.2015.06.050. DOI
Costa JG, Pessoa OD, Menezes EA, Santiago GM, Lemos TL. Composition and larvicidal activity of essential oils from heartwood of DOI
Shaalan EAS, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour AH. Efficacy of botanical extracts from PubMed
Triba MN, Le Moyec L, Amathieu R, Goossens C, Bouchemal N, Nahon P, Rutledge DN, Savarin P. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters. Mol Biosyst. 2015;11(1):13–9. 10.1039/c4mb00414k. PubMed DOI
Hu T, Zhang W, Fan Z, Sun G, Likhodi S, Randell E, Zhai G. Metabolomics differential correlation network analysis of osteoarthritis. In Biocomputing: Proceedings of the Pacific Symposium. World Scientific Publishing Company. Singapore; 2016. pp. 120–131. PubMed
Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486–94. 10.1093/nar/gky310. PubMed DOI PMC
Brinzer RA, Henderson L, Marchiondo AA, Woods DJ, Davies SA, Dow JA. Metabolomic profiling of permethrin-treated PubMed DOI
Gao YP, Luo M, Wang XY, He XZ, Lu W, Zheng XL. Pathogenicity of PubMed DOI PMC
Cerstiaens A, Huybrechts J, Kotanen S, Lebeau I, Meylaers K, De Loof A, Schoofs L. Neurotoxic and neurobehavioral effects of kynurenines in adult insects. Biochem Biophys Res Commun. 2003;312(4):1171–7. 10.1016/j.bbrc.2003.11.051. PubMed DOI
Li Y, Li Y, Wang G, Li J, Zhang M, Wu J, Liang C, Zhou H, Tang J, Zhu G. Differential metabolome responses to deltamethrin between resistant and susceptible PubMed DOI
Mansingh A. The effect of malathion on the metabolism of amino acids in the German cockroach PubMed DOI
Rand EED, Smit S, Beukes M, Apostolides Z, Pirk CW, Nicolson SW. Detoxification mechanisms of honeybees ( PubMed DOI PMC
Marco L, Sassera D, Epis S, Mastrantonio V, Ferrari M, Ricci I, Comandatore F, Bandi C, Porretta D, Urbanelli S. The choreography of the chemical defensome response to insecticide stress: insights into the PubMed DOI PMC
Mack L. Time-series analysis of transcriptomic changes due to permethrin exposure reveals that PubMed DOI PMC
Zhang C, Yuan H, Hu Y, Li X, Gao Y, Ma Z, Lei P. Structural diversity design, synthesis, and insecticidal activity analysis of ester-containing isoxazoline derivatives acting on the GABA receptor. J Agric Food Chem. 2023;71(7):3184–91. 10.1021/acs.jafc.2c07910. PubMed DOI
Homberg U, Humberg T, Seyfarth J, Bode K, Pérez M. GABA immunostaining in the central complex of dicondylian insects. J Comp Neurol. 2018;526(14):2301–18. 10.1002/cne.24497. PubMed DOI
Zulfiqar F, Akram N, Ashraf M. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta. 2019. 10.1007/s00425-019-03293-1. PubMed DOI
Darkó É, Végh B, Khalil R, Marček T, Szalai G, Pál M, Janda T. Metabolic responses of wheat seedlings to osmotic stress induced by various osmolytes under iso-osmotic conditions. PLoS ONE. 2019;14(12): e0226151. 10.1371/journal.pone.0226151. PubMed DOI PMC
USEPA, United States Environmental Protection Agency. Methods for Measuring the Acute Toxicity of Effluent to Freshwater and Marine Organisms. 3rd ed. USEPA. United States Environmental Protection Agency. Washington, DC, United States; 1985.
FATMA, Limites Máximos de Toxidade Aguda para efluentes de diferentes origins. In: PORTARIA No. 017/02; 2002.
Ural MS, Saglam N. A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout ( DOI
Başer S, Erkoç F, Selvi M, Koçak O. Investigation of acute toxicity of permethrin on guppies PubMed DOI
Barata C, Baird DJ, Nogueira AJA, Soares AMVM, Riva MC. Toxicity of binary mixtures of metals and pyrethroid insecticides to PubMed DOI
Imgrund H. Environmental Fate of Permethrin. In Environmental Monitoring Branch. Department of Pesticide Regulation. Sacramento, CA, USA; 2003.
Maranho LA, Botelho RG, Mitie Inafuku M, Nogueira L, de Olinda AR, InaciodeSousa BAI, Tornisielo VL. Testing the neem biopesticide (
Ulrich J, Stiltz S, St-Gelais A, El Gaafary M, Simmet T, Syrovets T, Schmiech M. Phytochemical composition of PubMed DOI PMC
Sun X-Y, Zheng Y-P, Lin D-H, Zhang H, Zhao F, Yuan C-S. Potential anti-cancer activities of furanodiene, a sesquiterpene from PubMed DOI
Quassinti L, Bramucci M, Lupidi G, Barboni L, Ricciutelli M, Sagratini G, Papa F, Caprioli G, Petrelli D, Vitali LA, Vittori S, Maggi F. In Vitro biological activity of essential oils and isolated furanosesquiterpenes from the neglected vegetable PubMed DOI
Wang C-C, Chen L-G, Yang L-L. Cytotoxic activity of sesquiterpenoids from PubMed DOI
Wang K-T, Chen L-G, Yang L-L, Ke W-M, Chang H-C, Wan C-C. Analysis of the sesquiterpenoids in processed PubMed DOI
Spinozzi E, Ferrati M, Baldassarri C, Petrelli R, Cappellacci L, De Fazi L, Benelli G, Maggi F. Unlocking the potential of alexanders ( DOI
Wang Y, Li J, Guo J, Wang Q, Zhu S, Gao S, Yang C, Wei M, Pan X, Zhu W, Ding D, Gao R, Zhang W, Wang J, Zang L. Cytotoxic and antitumor effects of curzerene from PubMed DOI
Pavela R, Pavoni L, Bonacucina G, Cespi M, Cappellacci L, Petrelli R, Spinozzi E, Aguzzi C, Zeppa L, Ubaldi M, Desneux N, Canale A, Maggi F, Benelli G. Encapsulation of DOI
Stepanenko AA, Dmitrenko VV. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene. 2015;569(2):182–90. 10.1016/j.gene.2015.05.065. PubMed DOI
Gugliuzzo A, Francardi V, Simoni S, Roversi PF, Ferrati M, Spinozzi E, Perinelli DR, Bonacucina G, Maggi F, Tortorici S, Tropea Garzia G, Biondi A, Rizzo R. Role of plant essential oil nanoemulsions on host colonization by the invasive ambrosia beetle DOI
Maggi F, Papa F, Giuliani C, Maleci Bino L, Venditti A, Bianco A, Nicoletti M, Iannarelli R, Caprioli G, Sagratini G, Cortese M, Ricciutelli M, Vittori S. Essential oil chemotypification and secretory structures of the neglected vegetable DOI
Williams CM, Mander LN. Chromatography with silver nitrate. Tetrahedron. 2001;57(3):425–47. 10.1016/S0040-4020(00)00927-3. DOI
Mander LN, Williams CM. Chromatography with silver nitrate: part 2. Tetrahedron. 2016;72(9):1133–50. 10.1016/j.tet.2016.01.004. DOI
Damiens D, Benedict M, Wille M, Gilles J. An inexpensive and effective larval diet for PubMed DOI
WHO. Report of the WHO Informal Consultation on the Evaluation and Testing of 854 Insecticides. WHO Geneva. 1996;10:1026–1032.
Page M, Bejaoui N, Cinq-Mars B, Lemieux P. Optimization of the tetrazoliun-based colorimetric assay for the measurement of cell number and cytotoxicity. Int J Immunopharmacol. 1998;10(7):785–93. 10.1016/0192-0561(88)90001-X. PubMed DOI
Misra BB, Das V, Landi M, Abenavoli MR, Araniti F. Short-term effects of the allelochemical umbelliferone on PubMed DOI
Misra B. Steps for building an open source EI-MS mass spectral library for GC-MS -based metabolomics. Metabolomics Protocols & Workflows. 2019; 10.17504/protocols.io.8txhwpn
Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan W-MT, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3:211–21. 10.1007/s11306-007-0082-2. PubMed DOI PMC
OECD. Guideline for testing of chemicals.
Hlina BL, Birceanu O, Robinson CS, Dhiyebi H, Wilkie MP. The relationship between thermal physiology and lampricide sensitivity in larval sea lamprey ( DOI
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2008. http://www.R-project.org. Accessed 26 Jul 2024.
Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265–7. DOI
Finney DJ. Probit analysis. London: Cambridge University Press; 1971.
Pang Z, Lu Y, Zhou G, Hui F, Xu L, Viau C, Spigelman AF, MacDonald PE, Wishart DS, Li S, Xia J. MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024;52:W398–406. 10.1093/nar/gkae253. PubMed DOI PMC
Basu S, Duren W, Evans CR, Burant CF, Michailidis G, Karnovsky A. Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data. Bioinformatics. 2017;33(10):1545–53. 10.1093/bioinformatics/btx012. PubMed DOI PMC