Direct detection of phycocyanin in sediments by hyperspectral imaging
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39834751
PubMed Central
PMC11742344
DOI
10.1007/s10933-024-00350-y
PII: 350
Knihovny.cz E-zdroje
- Klíčová slova
- Algal blooms, Cyanobacteria, Environmental change, Paleolimnology, Pigments,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Cyanobacteria are ubiquitous aquatic organisms with a remarkable evolutionary history reaching as far as 1.9 Ga. They play a vital role in ecosystems yet also raise concerns due to their association with harmful algal blooms. Understanding the historical patterns and drivers behind these blooms is crucial for effective ecosystem management. Lake-sediment cores are valuable natural environmental archives, recording the histories of such blooms. Among others, phycocyanin, a pigment specific to cyanobacteria, emerges as a promising biomarker for reconstructing past cyanobacterial bloom events. However, due to the physicochemical properties of phycocyanin, there is no validated method available to extract and measure this pigment from complex sediment matrix. This study explores the applicability of hyperspectral imaging (HSI), a non-destructive technique, as a novel approach for high resolution in-situ detection and quantification of phycocyanin in lake sediments. Our experiments show that phycocyanin can be detected by HSI with an absorption trough at 620 nm (relative absorption band depth, RABD620). We established a semi-quantitative calibration of the spectral index RABD620 by conducting spiking experiments with phycocyanin standard (known phycocyanin mass) on organic-rich and mineral-rich sediments of varying water contents. We also assessed potential interference from chlorophyll a, another photosynthetic pigment, ensuring the reliability of hyperspectral phycocyanin measurements. Our findings demonstrate a significant correlation (R2 ranging from 0.37 to 0.997) between the RABD620 index and associated phycocyanin amounts in organic-rich and minerogenic sediments. This indicates the potential of the spectral index to directly measure in-situ biomarker concentrations on split sediment cores. Although confounding factors such as water and chlorophyll a content can influence the spectral signal, this method offers a rapid and non-destructive approach for studying historical cyanobacterial blooms in sedimentary records. This opens promising grounds for various applications, including ecosystem-health assessment and environmental change monitoring. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10933-024-00350-y.
Zobrazit více v PubMed
Ammann B (1986) Litho- and palynostratigraphy at Lobsigensee: evidences for trophic changes during the Holocene. studies in the Late-Quaternary of Lobsigensee No 13. Hydrobiologia 143:301–307. 10.1007/BF00026674
Benedetti S, Rinalducci S, Benvenuti F et al (2006) Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae. J Chromatogr B 833:12–18. 10.1016/J.JCHROMB.2005.10.010 PubMed
Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58:419–435. 10.1083/jcb.58.2.419 PubMed PMC
Birlo S, Tylmann W, Zolitschka B (2023) Bayesian age–depth modelling applied to varve and radiometric dating to optimize the transfer of an existing high-resolution chronology to a new composite sediment profile from Holzmaar (West Eifel volcanic field, Germany). Geochronology 5:65–90. 10.5194/gchron-5-65-2023
Brossard M, Marion R, Carrére V (2016) Deconvolution of SWIR reflectance spectra for automatic mineral identification in hyperspectral imaging. Remote Sensing Lett 7:581–590. 10.1080/2150704x.2016.1168946
Butz C, Grosjean M, Fischer D et al (2015) Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments. J Appl Remote Sens 9:096031–096031. 10.1117/1.jrs.9.096031
Butz C, Grosjean M, Goslar T, Tylmann W (2017) Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland. J Paleolimnol 58:57–72. 10.1007/s10933-017-9955-1
Carey CC, Ibelings BW, Hoffmann EP et al (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407. 10.1016/j.watres.2011.12.016 PubMed
Dev PJ, Sukenik A, Mishra DR, Ostrovsky I (2022) Cyanobacterial pigment concentrations in inland waters: novel semi-analytical algorithms for multi-and hyperspectral remote sensing data. Sci Total Environ 805:150423. 10.1016/j.scitotenv.2021.150423 PubMed
Doke JM (2005) An improved and efficient method for the extraction of phycocyanin from Spirulina sp. Int J Food Eng 10.2202/1556-3758.1037
Favot EJ, Hadley KR, Paterson AM et al (2020) Using visible near-infrared reflectance spectroscopy (VNIRS) of lake sediments to estimate historical changes in cyanobacterial production: potential and challenges. J Paleolimnol 64:335–345. 10.1007/s10933-020-00140-2
Foy R (1993) The phycocyanin to chlorophyll α ratio and other cell components as indicators of nutrient limitation in two planktonic cyanobacteria subjected to low-light exposures. J Plankton Res 15:1263–1276. 10.1093/plankt/15.11.1263
Gantt E (1980) Structure and function of Phycobilisomes: light harvesting pigment complexes in red and blue-green algae. Elsevier
Ghanbari H, Zilkey DR, Gregory-Eaves I, Antoniades D (2023) A new index for the rapid generation of chlorophyll time series from hyperspectral imaging of sediment cores. Limnol Oceanogr Methods 21:703–717. 10.1002/lom3.10576
Gray BH, Lipschultz CA, Gantt E (1973) Phycobilisomes from a blue-green alga Nostoc species. J Bacteriol 116:471–478. 10.1128/jb.116.1.471-478.1973 PubMed PMC
Hansen RB (1993) Lecture notes in Earth Sciences. In: Negendank JFW, Zolitschka B (eds) Paleolimnology of European maar lakes. Springer, pp 119–128
Horváth H, Kovács AW, Riddick C, Présing M (2013) Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. Eur J Phycol 48:278–286. 10.1080/09670262.2013.821525
Hsieh-Lo M, Castillo G, Ochoa-Becerra MA, Mojica L (2019) Phycocyanin and phycoerythrin: strategies to improve production yield and chemical stability. Algal Res 42:101600. 10.1016/j.algal.2019.101600
İlter I, Akyıl S, Demirel Z et al (2018) Optimization of phycocyanin extraction from Spirulina platensis using different techniques. J Food Compos Anal 70:78–88. 10.1016/J.JFCA.2018.04.007
Jaeschke DP, Teixeira IR, Marczak LDF, Mercali GD (2021) Phycocyanin from Spirulina: a review of extraction methods and stability. Food Res Int 143:110314. 10.1016/j.foodres.2021.110314 PubMed
Jeffrey S, t, Humphrey G, (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194. 10.1016/s0015-3796(17)30778-3
Khattar JIS, Kaur S, Kaushal S et al (2015) Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions. Algal Res 12:463–469. 10.1016/j.algal.2015.10.007
Lami A, Niessen F, Guilizzoni P et al (1994) Palaeolimnological studies of the eutrophication of volcanic Lake Albano (Central Italy). J Paleolimnol 10:181–197. 10.1007/BF00684032
Lauceri R, Bresciani M, Lami A, Morabito G (2017) Chlorophyll a interference in phycocyanin and allophycocyanin spectrophotometric quantification. J Limnol. 10.4081/jlimnol.2017.1691
Lawrenz E, Fedewa EJ, Richardson TL (2011) Extraction protocols for the quantification of phycobilins in aqueous phytoplankton extracts. J Appl Phycol 23:865–871. 10.1007/s10811-010-9600-0
Le C, Li Y, Zha Y et al (2011) Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China. Int J Remote Sens 32:8253–8269. 10.1080/01431161.2010.533210
Li L, Sengpiel RE, Pascual DL et al (2010) Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. Int J Remote Sens 31:4147–4162. 10.1080/01431161003789549
Li Y, Zhang Z, Paciulli M, Abbaspourrad A (2020) Extraction of phycocyanin—a natural blue colorant from dried spirulina biomass: influence of processing parameters and extraction techniques. J Food Sci 85:727–735. 10.1111/1750-3841.14842 PubMed
Macário IP, Castro BB, Nunes MI et al (2015) New insights towards the establishment of phycocyanin concentration thresholds considering species-specific variability of bloom-forming cyanobacteria. Hydrobiologia 757:155–165. 10.1007/s10750-015-2248-7
Makri S, Lami A, Tu L et al (2021) Holocene phototrophic community and anoxia dynamics in meromictic Lake Jaczno (NE Poland) using high-resolution hyperspectral imaging and HPLC data. Biogeosciences 18:1839–1856. 10.5194/bg-18-1839-2021
Mehrubeoglu M, Teng MY, Savage M, et al (2012) Hyperspectral imaging and analysis of mixed algae species in liquid media. IEEE
Mehrubeoglu M, Zimba PV, McLauchlan LL, Teng MY (2013) Spectral unmixing of three-algae mixtures using hyperspectral images. IEEE
Meyer-Jacob C, Michelutti N, Paterson AM et al (2017) Inferring past trends in lake water organic carbon concentrations in northern lakes using sediment spectroscopy. Environ Sci Technol 51:13248–13255. 10.1021/acs.est.7b03147 PubMed
Michelutti N, Smol JP (2016) Visible spectroscopy reliably tracks trends in paleo-production. J Paleolimnol 56:253–265. 10.1007/s10933-016-9921-3
Moraes CC, Sala L, Cerveira GP, Kalil SJ (2011) C-phycocyanin extraction from Spirulina platensis wet biomass. Braz J Chem Eng 28:45–49. 10.1590/S0104-66322011000100006
O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334. 10.1016/j.hal.2011.10.027
Padyana AK, Bhat VB, Madyastha KM et al (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898. 10.1006/bbrc.2001.4663 PubMed
Patel A, Mishra S, Pawar R, Ghosh PK (2005) Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40:248–255. 10.1016/j.pep.2004.10.028 PubMed
Randolph K, Wilson J, Tedesco L et al (2008) Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote Sens Environ 112:4009–4019. 10.1016/j.rse.2008.06.002
Reuss N (2005) Sediment pigments as biomarkers of environmental change
Rousso BZ, Bertone E, Stewart R et al (2022) Chlorophyll and phycocyanin in-situ fluorescence in mixed cyanobacterial species assemblages: effects of morphology, cell size and growth phase. Water Res 212:118127. 10.1016/j.watres.2022.118127 PubMed
Rydberg J, Cooke CA, Tolu J et al (2020) An assessment of chlorophyll preservation in lake sediments using multiple analytical techniques applied to the annually laminated lake sediments of Nylandssjön. J Paleolimnol 64:379–388. 10.1007/s10933-020-00143-z
Sanchini A, Grosjean M (2020) Quantification of chlorophyll a, chlorophyll b and pheopigments a in lake sediments through deconvolution of bulk UV–VIS absorption spectra. J Paleolimnol 64:243–256. 10.1007/s10933-020-00135-z
Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801. 10.1016/S0032-9592(98)00153-8
Schaad E (2022) Plant protection products in sediments of a Swiss pond: breaking down PPP contamination in Lobsigensee, Switzerland. Master’s Thesis, University of Bern
Schluchter WM, Glazer AN (1999) Biosynthesis of phycobiliproteins in cyanobacteria. Springer, US
Schneider T, Rimer D, Butz C, Grosjean M (2018) A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography. J Paleolimnol 60:381–398. 10.1007/s10933-018-0028-x
Sidler WA (1994) Phycobilisome and phycobiliprotein structures. Springer, Netherlands
Simis SG, Peters SW, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50:237–245. 10.4319/lo.2005.50.1.0237
Sorrel P, Jacq K, Van Exem A et al (2021) Evidence for centennial-scale Mid-Holocene episodes of hypolimnetic anoxia in a high-altitude lake system from central Tian Shan (Kyrgyzstan). Quat Sci Rev 252:106748. 10.1016/j.quascirev.2020.106748
Stockhausen H, Zolitschka B (1999) Environmental changes since 13,000 cal. BP reflected in magnetic and sedimentological properties of sediments from Lake Holzmaar (Germany). Quat Sci Rev 18:913–925. 10.1016/s0277-3791(99)00005-0
Sun D, Li Y, Wang Q et al (2013) Hyperspectral remote sensing of the pigment c-phycocyanin in turbid inland waters, based on optical classification. IEEE Trans Geosci Remote Sens 51:3871–3884. 10.1109/tgrs.2012.2227976
Takano H, Arai T, Hirano M, Matsunaga T (1995) Effects of intensity and quality of light on phycocyanin production by a marine cyanobacterium Synechococcus sp. NKBG 042902. Appl Microbiol Biotechnol 43:1014–1018. 10.1007/bf00166918
Thrane J-E, Kyle M, Striebel M et al (2015) Spectrophotometric analysis of pigments: a critical assessment of a high-throughput method for analysis of algal pigment mixtures by spectral deconvolution. PLoS ONE 10:e0137645. 10.1371/journal.pone.0137645 PubMed PMC
Trygg J, Wold S (2002) Orthogonal projections to latent structures (O-PLS). J Chemom 16:119–128. 10.1002/cem.695
Yacobi YZ, Köhler J, Leunert F, Gitelson A (2015) Phycocyanin-specific absorption coefficient: eliminating the effect of chlorophylls absorption. Limnol Oceanogr Methods 13:157–168. 10.1002/lom3.10015
Zander PD, Wienhues G, Grosjean M (2022) Scanning hyperspectral imaging for in situ biogeochemical analysis of lake sediment cores: review of recent developments. J Imaging 8:58. 10.3390/jimaging8030058 PubMed PMC
Zander PD, Wirth SB, Gilli A et al (2023) Hyperspectral imaging sediment core scanning tracks high-resolution Holocene variations in (an) oxygenic phototrophic communities at Lake Cadagno, Swiss Alps. Biogeosciences 20:2221–2235. 10.5194/bg-20-2221-2023
Zieger SE, Mosshammer M, Kühl M, Koren K (2020) Hyperspectral luminescence imaging in combination with signal deconvolution enables reliable multi-indicator-based chemical sensing. ACS Sensors 6:183–191. 10.1021/acssensors.0c02084 PubMed
Zilinskas BA, Greenwald LS (1986) Phycobilisome structure and function. Photosynth Res 10:7–35. 10.1007/BF00024183 PubMed
Zimba PV (2012) An improved phycobilin extraction method. Harmful Algae 17:35–39. 10.1016/j.hal.2012.02.009