Safety of Human USH1C Transgene Expression Following Subretinal Injection in Wild-Type Pigs
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
39836403
PubMed Central
PMC11756606
DOI
10.1167/iovs.66.1.48
PII: 2802489
Knihovny.cz E-zdroje
- MeSH
- cytoskeletální proteiny genetika MeSH
- Dependovirus genetika MeSH
- elektroretinografie * MeSH
- genetická terapie metody MeSH
- genetické vektory * MeSH
- injekce nitrooční * MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- optická koherentní tomografie * MeSH
- prasata MeSH
- proteiny buněčného cyklu genetika MeSH
- regulace genové exprese MeSH
- retina * metabolismus patologie MeSH
- transgeny * MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytoskeletální proteiny MeSH
- proteiny buněčného cyklu MeSH
PURPOSE: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose. METHODS: Twelve WT pigs (24 eyes) were divided into three groups: four pigs each received bilateral subretinal injections of either vehicle, low dose (3.3 × 1010 vector genomes [vg] per eye), or high dose (1.0 × 1011 vg per eye). Total retinal thickness (TRT) was evaluated using optical coherence tomography and retinal function was assessed with full-field electroretinography (ff-ERG) at baseline and two months post-surgery. After necropsy, retinal changes were examined through histopathology, and human USH1C_a1/harmonin expression was assessed by quantitative PCR (qPCR) and Western blotting. RESULTS: OT_USH_101 led to high USH1C_a1 expression in WT pig retinas without significant TRT changes two months after subretinal injection. The qPCR revealed expression of the human USH1C_a1 transgene delivered by the adeno-associated virus vector. TRT changes were minimal across groups: vehicle (256 ± 21 to 243 ± 18 µm; P = 0.108), low dose (251 ± 32 to 258 ± 30 µm; P = 0.076), and high dose (242 ± 24 to 259 ± 28 µm; P = 0.590). The ff-ERG showed no significant changes in rod or cone responses. Histopathology indicated no severe retinal adverse effects in the vehicle and low dose groups. CONCLUSIONS: Early-phase clinical imaging, electrophysiology, and histopathological assessments indicated that subretinal administration of OT_USH_101 was well tolerated in the low-dose treatment arm. OT_USH_101 treatment resulted in high expression of human USH1C_a1. Although histopathological changes were not severe, more frequent changes were observed in the high-dose group.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Science Libechov Czech Republic
Institute of Developmental Biology and Neurobiology Johannes Gutenberg University Mainz Germany
Institute of Molecular Physiology Molecular Cell Biology Johannes Gutenberg University Mainz Germany
Nuffield Laboratory of Ophthalmology University of Oxford Oxford United Kingdom
Odylia Therapeutics Atlanta Georgia United States
Oxford Eye Hospital Oxford University Hospitals NHS Foundation Trust Oxford United Kingdom
STZeyetrial GmbH Tübingen Germany
University Eye Hospital Tübingen Centre for Ophthalmology University of Tübingen Tübingen Germany
Zobrazit více v PubMed
Millán JM, Aller E, Jaijo T, Blanco-Kelly F, Gimenez-Pardo A, Ayuso C.. An update on the genetics of usher syndrome. J Ophthalmol. 2011; 2011: 417217. PubMed PMC
Vernon M. Usher's syndrome–deafness and progressive blindness. Clinical cases, prevention, theory and literature survey. J Chronic Dis. 1969; 22: 133–151. PubMed
Boughman JA, Vernon M, Shaver KA.. Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis. 1983; 36: 595–603. PubMed
Marazita ML, Ploughman LM, Rawlings B, Remington E, Arnos KS, Nance WE. Genetic epidemiological studies of early-onset deafness in the U.S. school-age population. Am J Med Genet. 1993; 46: 486–491. PubMed
Delmaghani S, El-Amraoui A.. The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet. 2022; 141(3-4): 709–935. PubMed PMC
Ullah F, Zeeshan Ali M, Ahmad S, et al. .. Current updates on genetic spectrum of Usher syndrome [published online ahead of print May 8, 2024]. Nucleosides Nucleotides Nucleic Acids, 10.1080/15257770.2024.2344194. PubMed DOI
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, et al. .. Usher syndrome: genetics of a human ciliopathy. Int J Mol Sci. 2021; 22(13): 6723. PubMed PMC
Whatley M, Francis A, Ng ZY, et al. .. Usher syndrome: genetics and molecular links of hearing loss and directions for therapy. Front Genet. 2020; 11: 565216. PubMed PMC
Nisenbaum E, Thielhelm TP, Nourbakhsh A, et al. .. Review of genotype-phenotype correlations in Usher syndrome. Ear Hear. 2022; 43(1): 1–8. PubMed PMC
Nagel-Wolfrum K, Fadl BR, Becker MM, et al. .. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. Hum Mol Genet. 2023; 32: 431–449. PubMed PMC
Schäfer J, Wenck N, Janik K, et al. .. The Usher syndrome 1C protein harmonin regulates canonical Wnt signaling. Front Cell Dev Biol. 2023; 11: 1130058. PubMed PMC
de Joya EM, Colbert BM, Tang PC, et al. .. Usher syndrome in the inner ear: etiologies and advances in gene therapy. Int J Mol Sci. 2021; 22: 3910. PubMed PMC
Leroy BP, Fischer MD, Flannery JG, et al. .. Gene therapy for inherited retinal disease: long-term durability of effect. Ophthalmic Res. 2023; 66: 179–196. PubMed
Cheng SY, Punzo C.. Update on viral gene therapy clinical trials for retinal diseases. Hum Gene Ther. 2022; 33(17-18): 865–878. PubMed PMC
French LS, Mellough CB, Chen FK, Carvalho LS.. A review of gene, drug and cell-based therapies for Usher syndrome. Front Cell Neurosci. 2020; 14: 183. PubMed PMC
Martinez Velazquez LA, Ballios BG. The next generation of molecular and cellular therapeutics for inherited retinal disease. Int J Mol Sci. 2021; 22: 11542. PubMed PMC
Lentz J, Pan F, Ng SS, Deininger P, Keats B.. Ush1c216A knock-in mouse survives Katrina. Mutat Res. 2007; 616(1-2): 139–144. PubMed
Lentz JJ, Jodelka FM, Hinrich AJ, et al. .. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med. 2013; 19: 345–350. PubMed PMC
Pan B, Askew C, Galvin A, et al. .. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat Biotechnol. 2017; 35: 264–272. PubMed PMC
Grotz S, Schäfer J, Wunderlich KA, et al. .. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol Med. 2022; 14(4): e14817. PubMed PMC
Vodicka P, Smetana K Jr., Dvoránková B, et al. .. The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci. 2005; 1049: 161–71. PubMed
Sedmak T, Wolfrum U.. Intraflagellar transport proteins in ciliogenesis of photoreceptor cells. Biol Cell. 2011; 103: 449–466. PubMed
Reiners J, Reidel B, El-Amraoui A, et al. .. Differential distribution of harmonin isoforms and their possible role in Usher-1 protein complexes in mammalian photoreceptor cells. Invest Ophthalmol Vis Sci. 2003; 44: 5006–5015. PubMed
Overlack N, Kilic D, Bauss K, et al. .. Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina. Biochim Biophys Acta. 2011; 1813: 1883–1892. PubMed
Lewis GP, Charteris DG, Sethi CS, Fisher SK.. Animal models of retinal detachment and reattachment: identifying cellular events that may affect visual recovery. Eye. 2002; 16: 375–387. PubMed
Christoforidis J, Ricketts R, Loizos T, Chang S. Optical coherence tomography findings of quinine poisoning. Clin Ophthalmol. 2011; 5: 75–80. PubMed PMC
Wenzel DA, Kromer R, Poli S, et al. .. Optical coherence tomography-based determination of ischaemia onset—the temporal dynamics of retinal thickness increase in acute central retinal artery occlusion. Acta Ophthalmol. 2021; 99(2): e247–e252. PubMed
Regatieri CV, Alwassia A, Zhang JY, Vora R, Duker JS.. Use of optical coherence tomography in the diagnosis and management of uveitis. Int Ophthalmol Clin. 2012; 52: 33–43. PubMed PMC
Goldenberg D, Goldstein M, Loewenstein A, Habot-Wilner Z.. Vitreal, retinal, and choroidal findings in active and scarred toxoplasmosis lesions: a prospective study by spectral-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2013; 251: 2037–2045. PubMed
Chiang TK, White KM, Kurup SK, Yu M.. Use of visual electrophysiology to monitor retinal and optic nerve toxicity. Biomolecules. 2022; 12: 1390. PubMed PMC
Hassan-Karimi H, Jafarzadehpur E, Blouri B, Hashemi H, Sadeghi AZ, Mirzajani A.. Frequency domain electroretinography in retinitis pigmentosa versus normal eyes. J Ophthalmic Vis Res. 2012; 7: 34–38. PubMed PMC
Ebdali S, Hashemi B, Hashemi H, Jafarzadehpur E, Asgari S. Time and frequency components of ERG responses in retinitis pigmentosa. Int Ophthalmol. 2018; 38: 2435–2444. PubMed
Negro Silva LF, Li C, de Seadi Pereira PJB, et al. .. Biochemical and electroretinographic characterization of the minipig eye in the context of drug safety investigations. Int J Toxicol. 2019; 38: 415–422. PubMed
Augsburger AS, Haag V, Leuillet S, Legrand JJ, Forster R.. Recording of the full-field electroretinogram in minipigs. Vet Ophthalmol. 2012; 15(Suppl 2): 84–93. PubMed
Maya-Vetencourt JF, Di Marco S, Mete M, et al. .. Biocompatibility of a conjugated polymer retinal prosthesis in the domestic pig. Front Bioeng Biotechnol. 2020; 8: 579141. PubMed PMC
Al Mouiee D, Meijering E, Kalloniatis M, et al. .. Classifying retinal degeneration in histological sections using deep learning. Transl Vis Sci Technol. 2021; 10(7): 9. PubMed PMC
Mecklenburg L, Schraermeyer U.. An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol. 2007; 35: 252–267. PubMed
Ramadan RT, Ramirez R, Novosad BD, Callegan MC.. Acute inflammation and loss of retinal architecture and function during experimental Bacillus endophthalmitis. Curr Eye Res. 2006; 31: 955–965. PubMed
Iandiev I, Uckermann O, Pannicke T, et al. .. Glial cell reactivity in a porcine model of retinal detachment. Invest Ophthalmol Vis Sci. 2006; 47: 2161–2171. PubMed
Williams DS. Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy. Vis Res. 2008; 48: 433–441. PubMed PMC
El-Amraoui A, Petit C.. The retinal phenotype of Usher syndrome: pathophysiological insights from animal models. C R Biol. 2014; 337: 167–177. PubMed