Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL

. 2025 Jan ; 9 (1) : e70065. [epub] 20250120

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39840379

In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect TP53 variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.6%, 94.5%, and 94.8% at 1%, 2%, and 3% VAF cut-off, respectively. While only one false positive (FP) result was reported at >2% VAF, it was more challenging to distinguish true variants <2% VAF from background noise (37 FPs reported by 9 laboratories). The impact of low-VAF variants on time-to-second-treatment (TTST) and overall survival (OS) was investigated in a series of 1092 patients. Among patients not treated with targeted agents, patients with low-VAF TP53 variants had shorter TTST and OS versus wt-TP53 patients, and the relative risk of second-line treatment or death increased continuously with increasing VAF. Targeted therapy in ≥2 line diminished the difference in OS between patients with low-VAF TP53 variants and wt-TP53 patients, while patients with high-VAF TP53 variants had inferior OS compared to wild type-TP53 cases. Altogether, NGS-based approaches are technically capable of detecting low-VAF variants. No strict threshold can be suggested from a technical standpoint, laboratories reporting TP53 mutations should participate in a standardized validation set-up. Finally, whereas low-VAF variants affected outcomes in patients receiving chemoimmunotherapy, their impact on those treated with novel therapies remains undetermined. Our results pave the way for the harmonized and accurate TP53 assessment, which is indispensable for elucidating the role of TP53 mutations in targeted treatment.

AgenDix GmbH Dresden Germany

B Cell Neoplasia Unit and Strategic Research Program on CLL IRCCS Ospedale San Raffaele Milan Italy

Cancer Molecular Diagnostics Department Centre for Laboratory Medicine and Molecular Pathology St James Hospital Dublin Ireland

Center for Omics Sciences IRCCS Ospedale San Raffaele Milan Italy

Central Diagnostic Laboratory University Medical Center Utrecht Utrecht The Netherlands

Centre for Molecular Medicine Central European Institute of Technology Masaryk University Brno Czech Republic

Departement d'Hematologie et Immunologie Biologique AP HP Hopital Henri Mondor Creteil France

Department of Biological Hematology Sorbonne Université AP HP Pitié Salpêtrière Hospital Paris France

Department of Cell Biology Medical School Complutense University of Madrid Madrid Spain

Department of Clinical Genetics and Genomics Karolinska University Hospital Stockholm Sweden

Department of Clinical Genetics Centre of Diagnostic Investigations Copenhagen University Hospital Rigshospitalet Copenhagen Denmark

Department of Hematological Diagnostics and Genetics University Hospital in Krakow Krakow Poland

Department of Hematology and Central Hematology Laboratory Inselspital Bern University Hospital University of Bern Bern Switzerland

Department of Hematology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark

Department of Hematology Erasmus MC Cancer Institute University Medical Center Rotterdam Rotterdam The Netherlands

Department of Hematology Gregorio Marañón General University Hospital Gregorio Marañón Health Research Institute Madrid Spain

Department of Hematology Hospital Universitari Vall d'Hebron Barcelona Spain

Department of Hematology Hospital Universitario 12 de Octubre Instituto de Investigación Sanitaria Hospital 12 de Octubre Complutense University CNIO CIBERONC Madrid Spain

Department of Hematology University Hospital of Salamanca Salamanca Spain

Department of Human Anatomy and Histology Faculty of Medicine University of Salamanca Salamanca Spain

Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden

Department of Internal Medicine 3 Ulm University Ulm Germany

Department of Internal Medicine Hematology and Oncology and Institute of Medical Genetics and Genomics University Hospital Brno and Medical Faculty Masaryk University Brno Czech Republic

Department of Laboratory Genetics Genetics and Personalized Clinic Tartu University Hospital Tartu Estonia

Department of Laboratory Medicine AZ Sint Jan Hospital Bruges Belgium

Department of Medicine Universitat Autònoma de Barcelona Barcelona Spain

Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden

Department of Tumor Biology and Genetics Medical University of Warsaw Warsaw Poland

Experimental Hematology Vall d'Hebron Institute of Oncology Barcelona Spain

Genetics and Personalized Medicine Clinic Institute of Clinical Medicine Tartu University Tartu Estonia

Genomed Diagnósticos de Medicina Molecular iMM Instituto de Medicina Molecular Faculdade de Medicina Lisboa Portugal

Genomics Unit Gregorio Marañón General University Hospital Gregorio Marañón Health Research Institute Madrid Spain

Haematology Department Belfast City Hospital Belfast UK

Hematology Department Hospital Clínico Universitario INCLIVA Valencia Spain

Hematology Department Hospital Universitari i Politècnic la Fe Valencia Spain

Hematology laboratory HUPSSD Hôpital Avicenne APHP Bobigny France

Hematology Laboratory Rambam Medical Center Haifa Israel

INSERM U978 Université Sorbonne Paris Nord Bobigny France

Institut Universitaire de Cancérologie de Toulouse Toulouse France

Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece

Institute of Oncology Research and Oncology Institute of Southern Switzerland Bellinzona Switzerland

Laboratoire d'Hématologie Biologique CHU Bordeaux Bordeaux France

Laboratorio di Diagnostica Molecolare Servizio di Genetica Medica EOLAB Ente Ospedaliero Cantonale Bellinzona Switzerland

Laboratório Hemato Oncologia Instituto Português de Oncologia de Lisboa Lisbon Portugal

Laboratorio specialistico UOC ematologia Ospedale San Francesco ASL Nuoro Italy

Medical School Università Vita Salute San Raffaele Milan Italy

Molecular Cytogenetics Unit Hematology Department Hospital Universitario Puerta de Hierro Majadahonda Madrid Spain

Molecular Pathology University Hospitals Dorset Bournemouth UK

National Medical Research Center for Hematology Moscow Russia

Oncohematology Research Group Institute of Biomedical Research of Salamanca and University of Salamanca Salamanca Spain

Outpatient department of Hematology Oncology and Chemotherapy Botkin Hospital and Department of Hematology and Transfusiology Russian Medical Academy of Continuous Professional Education Moscow Russia

Pathology Department Hospital del Mar IMIM Barcelona Spain

Servicio de Hematología Hospital Universitario de Gran Canaria Dr Negrín Departamento de Morfología de La Universidad de Las Palmas de Gran Canaria Gran Canaria Spain

Serviço de Hematologia Instituto Português de Oncologia de Lisboa Lisbon Portugal

Univ Paris Est Creteil INSERM IMRB Creteil France

UOC Hematology Mazzoni Hospital Ascoli Piceno Ascoli Piceno Italy

Wessex Genomics Laboratory Service Salisbury NHS Foundation Trust Salisbury UK

Zobrazit více v PubMed

Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910‐1916. PubMed

Hallek M, Fischer K, Fingerle‐Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open‐label, phase 3 trial. Lancet. 2010;376(9747):1164‐1174. 10.1016/S0140-6736(10)61381-5 PubMed DOI

Byrd JC, Hillmen P, O'Brien S, et al. Long‐term follow‐up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031‐2042. 10.1182/blood-2018-08-870238 PubMed DOI PMC

Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517‐2528. 10.1056/NEJMoa1812836 PubMed DOI PMC

Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4‐year follow‐up of the ELEVATE‐TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment‐naïve chronic lymphocytic leukemia. Leukemia. 2022;36(4):1171‐1175. 10.1038/s41375-021-01485-x PubMed DOI PMC

Seymour JF, Kipps TJ, Eichhorst BF, et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed‐duration venetoclax‐rituximab. Blood. 2022;140(8):839‐850. 10.1182/blood.2021015014 PubMed DOI PMC

Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745‐2760. 10.1182/blood-2017-09-806398 PubMed DOI

Pandzic T, Ladenvall C, Engvall M, et al. Five percent variant allele frequency is a reliable reporting threshold for TP53 variants detected by next generation sequencing in chronic lymphocytic leukemia in the clinical setting. Hemasphere. 2022;6(8):e761. 10.1097/HS9.0000000000000761 PubMed DOI PMC

Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next‐generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269‐285. 10.1038/nrg.2017.117 PubMed DOI PMC

Spencer DH, Tyagi M, Vallania F, et al. Performance of common analysis methods for detecting low‐frequency single nucleotide variants in targeted next‐generation sequence data. J Mol Diagn. 2014;16(1):75‐88. 10.1016/j.jmoldx.2013.09.003 PubMed DOI PMC

Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow‐frequency mutations by Duplex Sequencing. Nat Protoc. 2014;9(11):2586‐2606. 10.1038/nprot.2014.170 PubMed DOI PMC

Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139‐2147. 10.1182/blood-2013-11-539726 PubMed DOI PMC

Landau DA, Tausch E, Taylor‐Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525‐530. 10.1038/nature15395 PubMed DOI PMC

Malcikova J, Pavlova S, Kunt Vonkova B, et al. Low‐burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. Blood. 2021;138(25):2670‐2685. 10.1182/blood.2020009530 PubMed DOI PMC

Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122‐2130. 10.1182/blood-2015-07-659144 PubMed DOI PMC

Blakemore SJ, Clifford R, Parker H, et al. Clinical significance of TP53, BIRC3, ATM and MAPK‐ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. Leukemia. 2020;34(7):1760‐1774. 10.1038/s41375-020-0723-2 PubMed DOI PMC

Brieghel C, Kinalis S, Yde CW, et al. Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. Haematologica. 2019;104(4):789‐796. 10.3324/haematol.2018.195818 PubMed DOI PMC

Bomben R, Rossi FM, Vit F, et al. TP53 mutations with low variant allele frequency predict short survival in chronic lymphocytic leukemia. Clin Cancer Res. 2021;27(20):5566‐5575. 10.1158/1078-0432.CCR-21-0701 PubMed DOI

Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070‐1080. 10.1038/s41375-017-0007-7 PubMed DOI PMC

Malcikova J, Pavlova S, Baliakas P, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐2024 update. Leukemia. 2024;38(7):1455‐1468. 10.1038/s41375-024-02267-x PubMed DOI PMC

Kato S, Han SY, Liu W, et al. Understanding the function‐structure and function‐mutation relationships of p53 tumor suppressor protein by high‐resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424‐8429. 10.1073/pnas.1431692100 PubMed DOI PMC

Giacomelli AO, Yang X, Lintner RE, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381‐1387. 10.1038/s41588-018-0204-y PubMed DOI PMC

Kotler E, Shani O, Goldfeld G, et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell. 2018;71(1):178‐190.e8. 10.1016/j.molcel.2018.06.012 PubMed DOI

de Andrade KC, Lee EE, Tookmanian EM, et al. The TP53 Database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ. 2022;29(5):1071‐1073. 10.1038/s41418-022-00976-3 PubMed DOI PMC

Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35(6):672‐688. 10.1002/humu.22552 PubMed DOI

Karczewski KJ, Francioli LC, Tiao G, et al The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434‐443. 10.1038/s41586-020-2308-7 PubMed DOI PMC

Fortuno C, Lee K, Olivier M, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 2021;42(3):223‐236. 10.1002/humu.24152 PubMed DOI PMC

Doffe F, Carbonnier V, Tissier M, et al. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death Differ. 2021;28(5):1477‐1492. 10.1038/s41418-020-00672-0 PubMed DOI PMC

R Foundation for Statistical Computing . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2021. http://www.R-project.org

ISO . International Standard ISO 15189: Medical laboratories—Requirements for quality and competence. In: Standardization tIOf, editor. Fourth edition; 2022.

Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next‐generation sequencing–based oncology panels. J Mol Diagn. 2017;19(3):341‐365. 10.1016/j.jmoldx.2017.01.011 PubMed DOI PMC

Roy S, Coldren C, Karunamurthy A, et al. Standards and guidelines for validating next‐generation sequencing bioinformatics pipelines. J Mol Diagn. 2018;20(1):4‐27. 10.1016/j.jmoldx.2017.11.003 PubMed DOI

Mattocks CJ, Morris MA, Matthijs G, et al. A standardized framework for the validation and verification of clinical molecular genetic tests. Eur J Hum Genet. 2010;18(12):1276‐1288. 10.1038/ejhg.2010.101 PubMed DOI PMC

Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 2019;28(5):1370‐1384. 10.1016/j.celrep.2019.07.001 PubMed DOI PMC

Edelmann J, Tausch E, Landau DA, et al. Frequent evolution of copy number alterations in CLL following first‐line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia. 2017;31(3):734‐738. 10.1038/leu.2016.317 PubMed DOI PMC

Bonfiglio S, Sutton LA, Ljungström V, et al. BTK and PLCG2 remain unmutated in one‐third of patients with CLL relapsing on ibrutinib. Blood Adv. 2023;7(12):2794‐2806. 10.1182/bloodadvances.2022008821 PubMed DOI PMC

Landau DA, Sun C, Rosebrock D, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun. 2017;8(1):2185. 10.1038/s41467-017-02329-y PubMed DOI PMC

Cafforio L, Raponi S, Cappelli LV, et al. Treatment with ibrutinib does not induce a TP53 clonal evolution in chronic lymphocytic leukemia. Haematologica. 2022;107(1):334‐337. 10.3324/haematol.2020.263715 PubMed DOI PMC

Gángó A, Alpár D, Galik B, et al. Dissection of subclonal evolution by temporal mutation profiling in chronic lymphocytic leukemia patients treated with ibrutinib. Int J Cancer. 2020;146(1):85‐93. 10.1002/ijc.32502 PubMed DOI

Jain N, Croner LJ, Allan JN, et al. Absence of BTK, BCL2, and PLCG2 mutations in chronic lymphocytic leukemia relapsing after first‐line treatment with fixed‐duration ibrutinib plus venetoclax. Clin Cancer Res. 2024;30(3):498‐505. 10.1158/1078-0432.CCR-22-3934 PubMed DOI PMC

Naeem A, Utro F, Wang Q, et al. Pirtobrutinib targets BTK C481S in ibrutinib‐resistant CLL but second‐site BTK mutations lead to resistance. Blood Adv. 2023;7(9):1929‐1943. 10.1182/bloodadvances.2022008447 PubMed DOI PMC

Brown J, Mashima K, Fernandes S, et al. Mutations detected in real world clinical sequencing during BTK inhibitor treatment in CLL. Res Sq. 2024. 10.21203/rs.3.rs-3837426/v1 DOI

Woyach JA, Jones D, Jurczak W, et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood. 2024;144(10):1061‐1068. 10.1182/blood.2023023659 PubMed DOI PMC

Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first‐line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC‐1102 study. Clin Cancer Res. 2020;26(15):3918‐3927. 10.1158/1078-0432.CCR-19-2856 PubMed DOI PMC

Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4‐year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020;38(34):4042‐4054. 10.1200/JCO.20.00948 PubMed DOI PMC

Tausch E, Schneider C, Robrecht S, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135(26):2402‐2412. 10.1182/blood.2019004492 PubMed DOI

Gonzalez D, Martinez P, Wade R, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29(16):2223‐2229. 10.1200/JCO.2010.32.0838 PubMed DOI

Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705‐711. 10.1038/leu.2016.263 PubMed DOI

Huber H, Tausch E, Schneider C, et al. Final analysis of the CLL2‐GIVe trial: obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood. 2023;142(11):961‐972. 10.1182/blood.2023020013 PubMed DOI

Brieghel C, Aarup K, Torp MH, et al. Clinical outcomes in patients with multi‐Hit TP53 chronic lymphocytic leukemia treated with ibrutinib. Clin Cancer Res. 2021;27(16):4531‐4538. 10.1158/1078-0432.CCR-20-4890 PubMed DOI PMC

Bomben R, Rossi FM, Vit F, et al. Clinical impact of TP53 disruption in chronic lymphocytic leukemia patients treated with ibrutinib: a campus CLL study. Leukemia. 2023;37(4):914‐918. 10.1038/s41375-023-01845-9 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...