Detection of clinically relevant variants in the TP53 gene below 10% allelic frequency: A multicenter study by ERIC, the European Research Initiative on CLL
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39840379
PubMed Central
PMC11746920
DOI
10.1002/hem3.70065
PII: HEM370065
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In chronic lymphocytic leukemia, the reliability of next-generation sequencing (NGS) to detect TP53 variants ≤10% allelic frequency (low-VAF) is debated. We tested the ability to detect 23 such variants in 41 different laboratories using their NGS method of choice. The sensitivity was 85.6%, 94.5%, and 94.8% at 1%, 2%, and 3% VAF cut-off, respectively. While only one false positive (FP) result was reported at >2% VAF, it was more challenging to distinguish true variants <2% VAF from background noise (37 FPs reported by 9 laboratories). The impact of low-VAF variants on time-to-second-treatment (TTST) and overall survival (OS) was investigated in a series of 1092 patients. Among patients not treated with targeted agents, patients with low-VAF TP53 variants had shorter TTST and OS versus wt-TP53 patients, and the relative risk of second-line treatment or death increased continuously with increasing VAF. Targeted therapy in ≥2 line diminished the difference in OS between patients with low-VAF TP53 variants and wt-TP53 patients, while patients with high-VAF TP53 variants had inferior OS compared to wild type-TP53 cases. Altogether, NGS-based approaches are technically capable of detecting low-VAF variants. No strict threshold can be suggested from a technical standpoint, laboratories reporting TP53 mutations should participate in a standardized validation set-up. Finally, whereas low-VAF variants affected outcomes in patients receiving chemoimmunotherapy, their impact on those treated with novel therapies remains undetermined. Our results pave the way for the harmonized and accurate TP53 assessment, which is indispensable for elucidating the role of TP53 mutations in targeted treatment.
B Cell Neoplasia Unit and Strategic Research Program on CLL IRCCS Ospedale San Raffaele Milan Italy
Center for Omics Sciences IRCCS Ospedale San Raffaele Milan Italy
Central Diagnostic Laboratory University Medical Center Utrecht Utrecht The Netherlands
Departement d'Hematologie et Immunologie Biologique AP HP Hopital Henri Mondor Creteil France
Department of Cell Biology Medical School Complutense University of Madrid Madrid Spain
Department of Clinical Genetics and Genomics Karolinska University Hospital Stockholm Sweden
Department of Hematological Diagnostics and Genetics University Hospital in Krakow Krakow Poland
Department of Hematology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Hematology Hospital Universitari Vall d'Hebron Barcelona Spain
Department of Hematology University Hospital of Salamanca Salamanca Spain
Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden
Department of Internal Medicine 3 Ulm University Ulm Germany
Department of Laboratory Medicine AZ Sint Jan Hospital Bruges Belgium
Department of Medicine Universitat Autònoma de Barcelona Barcelona Spain
Department of Molecular Medicine and Surgery Karolinska Institutet Stockholm Sweden
Department of Tumor Biology and Genetics Medical University of Warsaw Warsaw Poland
Experimental Hematology Vall d'Hebron Institute of Oncology Barcelona Spain
Haematology Department Belfast City Hospital Belfast UK
Hematology Department Hospital Clínico Universitario INCLIVA Valencia Spain
Hematology Department Hospital Universitari i Politècnic la Fe Valencia Spain
Hematology laboratory HUPSSD Hôpital Avicenne APHP Bobigny France
Hematology Laboratory Rambam Medical Center Haifa Israel
INSERM U978 Université Sorbonne Paris Nord Bobigny France
Institut Universitaire de Cancérologie de Toulouse Toulouse France
Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece
Institute of Oncology Research and Oncology Institute of Southern Switzerland Bellinzona Switzerland
Laboratoire d'Hématologie Biologique CHU Bordeaux Bordeaux France
Laboratório Hemato Oncologia Instituto Português de Oncologia de Lisboa Lisbon Portugal
Laboratorio specialistico UOC ematologia Ospedale San Francesco ASL Nuoro Italy
Medical School Università Vita Salute San Raffaele Milan Italy
Molecular Pathology University Hospitals Dorset Bournemouth UK
National Medical Research Center for Hematology Moscow Russia
Pathology Department Hospital del Mar IMIM Barcelona Spain
Serviço de Hematologia Instituto Português de Oncologia de Lisboa Lisbon Portugal
Univ Paris Est Creteil INSERM IMRB Creteil France
UOC Hematology Mazzoni Hospital Ascoli Piceno Ascoli Piceno Italy
Wessex Genomics Laboratory Service Salisbury NHS Foundation Trust Salisbury UK
Zobrazit více v PubMed
Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910‐1916. PubMed
Hallek M, Fischer K, Fingerle‐Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open‐label, phase 3 trial. Lancet. 2010;376(9747):1164‐1174. 10.1016/S0140-6736(10)61381-5 PubMed DOI
Byrd JC, Hillmen P, O'Brien S, et al. Long‐term follow‐up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019;133(19):2031‐2042. 10.1182/blood-2018-08-870238 PubMed DOI PMC
Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018;379(26):2517‐2528. 10.1056/NEJMoa1812836 PubMed DOI PMC
Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4‐year follow‐up of the ELEVATE‐TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment‐naïve chronic lymphocytic leukemia. Leukemia. 2022;36(4):1171‐1175. 10.1038/s41375-021-01485-x PubMed DOI PMC
Seymour JF, Kipps TJ, Eichhorst BF, et al. Enduring undetectable MRD and updated outcomes in relapsed/refractory CLL after fixed‐duration venetoclax‐rituximab. Blood. 2022;140(8):839‐850. 10.1182/blood.2021015014 PubMed DOI PMC
Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745‐2760. 10.1182/blood-2017-09-806398 PubMed DOI
Pandzic T, Ladenvall C, Engvall M, et al. Five percent variant allele frequency is a reliable reporting threshold for TP53 variants detected by next generation sequencing in chronic lymphocytic leukemia in the clinical setting. Hemasphere. 2022;6(8):e761. 10.1097/HS9.0000000000000761 PubMed DOI PMC
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next‐generation sequencing for detecting rare and subclonal mutations. Nat Rev Genet. 2018;19(5):269‐285. 10.1038/nrg.2017.117 PubMed DOI PMC
Spencer DH, Tyagi M, Vallania F, et al. Performance of common analysis methods for detecting low‐frequency single nucleotide variants in targeted next‐generation sequence data. J Mol Diagn. 2014;16(1):75‐88. 10.1016/j.jmoldx.2013.09.003 PubMed DOI PMC
Kennedy SR, Schmitt MW, Fox EJ, et al. Detecting ultralow‐frequency mutations by Duplex Sequencing. Nat Protoc. 2014;9(11):2586‐2606. 10.1038/nprot.2014.170 PubMed DOI PMC
Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139‐2147. 10.1182/blood-2013-11-539726 PubMed DOI PMC
Landau DA, Tausch E, Taylor‐Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525‐530. 10.1038/nature15395 PubMed DOI PMC
Malcikova J, Pavlova S, Kunt Vonkova B, et al. Low‐burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. Blood. 2021;138(25):2670‐2685. 10.1182/blood.2020009530 PubMed DOI PMC
Nadeu F, Delgado J, Royo C, et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122‐2130. 10.1182/blood-2015-07-659144 PubMed DOI PMC
Blakemore SJ, Clifford R, Parker H, et al. Clinical significance of TP53, BIRC3, ATM and MAPK‐ERK genes in chronic lymphocytic leukaemia: data from the randomised UK LRF CLL4 trial. Leukemia. 2020;34(7):1760‐1774. 10.1038/s41375-020-0723-2 PubMed DOI PMC
Brieghel C, Kinalis S, Yde CW, et al. Deep targeted sequencing of TP53 in chronic lymphocytic leukemia: clinical impact at diagnosis and at time of treatment. Haematologica. 2019;104(4):789‐796. 10.3324/haematol.2018.195818 PubMed DOI PMC
Bomben R, Rossi FM, Vit F, et al. TP53 mutations with low variant allele frequency predict short survival in chronic lymphocytic leukemia. Clin Cancer Res. 2021;27(20):5566‐5575. 10.1158/1078-0432.CCR-21-0701 PubMed DOI
Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070‐1080. 10.1038/s41375-017-0007-7 PubMed DOI PMC
Malcikova J, Pavlova S, Baliakas P, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐2024 update. Leukemia. 2024;38(7):1455‐1468. 10.1038/s41375-024-02267-x PubMed DOI PMC
Kato S, Han SY, Liu W, et al. Understanding the function‐structure and function‐mutation relationships of p53 tumor suppressor protein by high‐resolution missense mutation analysis. Proc Natl Acad Sci USA. 2003;100(14):8424‐8429. 10.1073/pnas.1431692100 PubMed DOI PMC
Giacomelli AO, Yang X, Lintner RE, et al. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet. 2018;50(10):1381‐1387. 10.1038/s41588-018-0204-y PubMed DOI PMC
Kotler E, Shani O, Goldfeld G, et al. A systematic p53 mutation library links differential functional impact to cancer mutation pattern and evolutionary conservation. Mol Cell. 2018;71(1):178‐190.e8. 10.1016/j.molcel.2018.06.012 PubMed DOI
de Andrade KC, Lee EE, Tookmanian EM, et al. The TP53 Database: transition from the International Agency for Research on Cancer to the US National Cancer Institute. Cell Death Differ. 2022;29(5):1071‐1073. 10.1038/s41418-022-00976-3 PubMed DOI PMC
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat. 2014;35(6):672‐688. 10.1002/humu.22552 PubMed DOI
Karczewski KJ, Francioli LC, Tiao G, et al The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434‐443. 10.1038/s41586-020-2308-7 PubMed DOI PMC
Fortuno C, Lee K, Olivier M, et al. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat. 2021;42(3):223‐236. 10.1002/humu.24152 PubMed DOI PMC
Doffe F, Carbonnier V, Tissier M, et al. Identification and functional characterization of new missense SNPs in the coding region of the TP53 gene. Cell Death Differ. 2021;28(5):1477‐1492. 10.1038/s41418-020-00672-0 PubMed DOI PMC
R Foundation for Statistical Computing . A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2021. http://www.R-project.org
ISO . International Standard ISO 15189: Medical laboratories—Requirements for quality and competence. In: Standardization tIOf, editor. Fourth edition; 2022.
Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next‐generation sequencing–based oncology panels. J Mol Diagn. 2017;19(3):341‐365. 10.1016/j.jmoldx.2017.01.011 PubMed DOI PMC
Roy S, Coldren C, Karunamurthy A, et al. Standards and guidelines for validating next‐generation sequencing bioinformatics pipelines. J Mol Diagn. 2018;20(1):4‐27. 10.1016/j.jmoldx.2017.11.003 PubMed DOI
Mattocks CJ, Morris MA, Matthijs G, et al. A standardized framework for the validation and verification of clinical molecular genetic tests. Eur J Hum Genet. 2010;18(12):1276‐1288. 10.1038/ejhg.2010.101 PubMed DOI PMC
Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep. 2019;28(5):1370‐1384. 10.1016/j.celrep.2019.07.001 PubMed DOI PMC
Edelmann J, Tausch E, Landau DA, et al. Frequent evolution of copy number alterations in CLL following first‐line treatment with FC(R) is enriched with TP53 alterations: results from the CLL8 trial. Leukemia. 2017;31(3):734‐738. 10.1038/leu.2016.317 PubMed DOI PMC
Bonfiglio S, Sutton LA, Ljungström V, et al. BTK and PLCG2 remain unmutated in one‐third of patients with CLL relapsing on ibrutinib. Blood Adv. 2023;7(12):2794‐2806. 10.1182/bloodadvances.2022008821 PubMed DOI PMC
Landau DA, Sun C, Rosebrock D, et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat Commun. 2017;8(1):2185. 10.1038/s41467-017-02329-y PubMed DOI PMC
Cafforio L, Raponi S, Cappelli LV, et al. Treatment with ibrutinib does not induce a TP53 clonal evolution in chronic lymphocytic leukemia. Haematologica. 2022;107(1):334‐337. 10.3324/haematol.2020.263715 PubMed DOI PMC
Gángó A, Alpár D, Galik B, et al. Dissection of subclonal evolution by temporal mutation profiling in chronic lymphocytic leukemia patients treated with ibrutinib. Int J Cancer. 2020;146(1):85‐93. 10.1002/ijc.32502 PubMed DOI
Jain N, Croner LJ, Allan JN, et al. Absence of BTK, BCL2, and PLCG2 mutations in chronic lymphocytic leukemia relapsing after first‐line treatment with fixed‐duration ibrutinib plus venetoclax. Clin Cancer Res. 2024;30(3):498‐505. 10.1158/1078-0432.CCR-22-3934 PubMed DOI PMC
Naeem A, Utro F, Wang Q, et al. Pirtobrutinib targets BTK C481S in ibrutinib‐resistant CLL but second‐site BTK mutations lead to resistance. Blood Adv. 2023;7(9):1929‐1943. 10.1182/bloodadvances.2022008447 PubMed DOI PMC
Brown J, Mashima K, Fernandes S, et al. Mutations detected in real world clinical sequencing during BTK inhibitor treatment in CLL. Res Sq. 2024. 10.21203/rs.3.rs-3837426/v1 DOI
Woyach JA, Jones D, Jurczak W, et al. Mutational profile in previously treated patients with chronic lymphocytic leukemia progression on acalabrutinib or ibrutinib. Blood. 2024;144(10):1061‐1068. 10.1182/blood.2023023659 PubMed DOI PMC
Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first‐line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC‐1102 study. Clin Cancer Res. 2020;26(15):3918‐3927. 10.1158/1078-0432.CCR-19-2856 PubMed DOI PMC
Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4‐year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III study. J Clin Oncol. 2020;38(34):4042‐4054. 10.1200/JCO.20.00948 PubMed DOI PMC
Tausch E, Schneider C, Robrecht S, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135(26):2402‐2412. 10.1182/blood.2019004492 PubMed DOI
Gonzalez D, Martinez P, Wade R, et al. Mutational status of the TP53 gene as a predictor of response and survival in patients with chronic lymphocytic leukemia: results from the LRF CLL4 trial. J Clin Oncol. 2011;29(16):2223‐2229. 10.1200/JCO.2010.32.0838 PubMed DOI
Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A, Haferlach C. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases. Leukemia. 2017;31(3):705‐711. 10.1038/leu.2016.263 PubMed DOI
Huber H, Tausch E, Schneider C, et al. Final analysis of the CLL2‐GIVe trial: obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood. 2023;142(11):961‐972. 10.1182/blood.2023020013 PubMed DOI
Brieghel C, Aarup K, Torp MH, et al. Clinical outcomes in patients with multi‐Hit TP53 chronic lymphocytic leukemia treated with ibrutinib. Clin Cancer Res. 2021;27(16):4531‐4538. 10.1158/1078-0432.CCR-20-4890 PubMed DOI PMC
Bomben R, Rossi FM, Vit F, et al. Clinical impact of TP53 disruption in chronic lymphocytic leukemia patients treated with ibrutinib: a campus CLL study. Leukemia. 2023;37(4):914‐918. 10.1038/s41375-023-01845-9 PubMed DOI PMC