Synthesis, H2S releasing properties, antiviral and antioxidant activities and acute cardiac effects of nucleoside 5'-dithioacetates
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39843902
PubMed Central
PMC11754443
DOI
10.1038/s41598-025-85351-1
PII: 10.1038/s41598-025-85351-1
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant, Antiviral, Dithioacetate, H2S donor, H2S release kinetics, Nucleoside, SARS-CoV-2,
- MeSH
- acetáty * farmakologie chemie chemická syntéza MeSH
- antioxidancia * farmakologie chemická syntéza chemie MeSH
- antivirové látky * farmakologie chemická syntéza chemie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- nukleosidy * farmakologie chemie chemická syntéza MeSH
- SARS-CoV-2 účinky léků MeSH
- sulfan * metabolismus chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetáty * MeSH
- antioxidancia * MeSH
- antivirové látky * MeSH
- nukleosidy * MeSH
- sulfan * MeSH
Hydrogen sulfide (H2S) is an endogenous gasotransmitter with cardioprotective and antiviral effects. In this work, new cysteine-selective nucleoside-H2S-donor hybrid molecules were prepared by conjugating nucleoside biomolecules with a thiol-activatable dithioacetyl group. 5'-Dithioacetate derivatives were synthesized from the canonical nucleosides (uridine, adenosine, cytidine, guanosine and thymidine), and the putative 5'-thio metabolites were also produced from uridine and adenosine. According to our measurements made with an H2S-specific sensor, nucleoside dithioacetates are moderately fast H2S donors, the guanosine derivative showed the fastest kinetics and the adenosine derivative the slowest. The antioxidant activity of 5'-thionucleosides is significantly higher than that of trolox, but lower than that of ascorbic acid, while intact dithioacetates have no remarkable antioxidant effect. In human Calu cells, the guanosine derivative showed a moderate anti-SARS-CoV-2 effect which was also confirmed by virus yield reduction assay. Dithioacetyl-adenosine and its metabolite showed similar acute cardiac effects as adenosine, however, it is noteworthy that both 5'-thio modified adenosines increased left ventricular ejection fraction or stroke volume, which was not observed with native adenosine.
HUN REN UD Pharmamodul Research Group University of Debrecen Nagyerdei krt 98 Debrecen 4032 Hungary
Institute of Healthcare Industry University of Debrecen Nagyerdei krt 98 Debrecen 4032 Hungary
National Laboratory of Virology University of Pécs Ifjúság útja 20 Pécs 7624 Hungary
Zobrazit více v PubMed
Gadalla, M. M. & Snyder, S. H. Hydrogen sulfide as a gasotransmitter. J. Neurochem. 113, 14–26. 10.1111/j.1471-4159.2010.06580.x (2010). PubMed PMC
Baskar, R. & Bian, J. Hydrogen sulfide gas has cell growth regulatory role. Eur. J. Pharmacol.656, 5–9. 10.1016/j.ejphar.2011.01.052 (2011). PubMed
Hellmich, M. R., Coletta, C., Chao, C. & Szabo, C. The therapeutic potential of cystathionine β-synthetase/hydrogen sulfide inhibition in cancer. Antioxid. Redox Signal.22, 424–448. 10.1089/ars.2014.5933 (2015). PubMed PMC
Zaorska, E., Tomasova, L., Koszelewski, D., Ostaszewski, R. & Ufnal, M. Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors. Biomolecules10, 323–348. 10.3390/biom10020323 (2020). PubMed PMC
Aroca, A., Gotor, C., Bassham, D. C. & Romero, L. C. Hydrogen sulfide: from a toxic molecule to a key molecule of cell life. Antioxidants9, 621–644. 10.3390/antiox9070621 (2020). PubMed PMC
Wallace, J. L. et al. A proof-of‐concept, phase 2 clinical trial of the gastrointestinal safety of a hydrogen sulfide‐releasing anti-inflammatory drug. Br. J. Pharmacol.177, 769–777. 10.1111/bph.14641 (2020). PubMed PMC
Citi, V. et al. Searching for novel hydrogen sulfide donors: the vascular effects of two thiourea derivatives. Pharmacol. Res.159, 105039–105048. 10.1016/j.phrs.2020.105039 (2020). PubMed
Fu, L. et al. An antifungal role of hydrogen sulfide on the postharvest pathogens Aspergillus Niger and Penicillium Italicum. PLoS One. 9, e104206. 10.1371/journal.pone.0104206 (2014). PubMed PMC
Yang, G. H2S as a potential defense against COVID-19? Am. J. Physiol. Cell. Physiol.319, C244–C249. 10.1152/ajpcell.00187.2020 (2020). PubMed PMC
Evgenev, M. B. & Frenkel, A. Possible application of H2S-producing compounds in therapy of coronavirus (COVID-19) infection and pneumonia. Cell. Stress Chaperones. 25, 713–715. 10.1007/s12192-020-01120-1 (2020). PubMed PMC
Dai, J., Teng, X., Jin, S. & Wu, Y. The antiviral roles of hydrogen sulfide by blocking the interaction between SARS-CoV-2 and its potential cell surface receptors. Oxid. Med. Cell. Longev. 2021 Article ID. 786699210.1155/2021/7866992 (2021). PubMed PMC
Bazhanov, N., Escaffre, O., Freiberg, A. N., Garofalo, R. P. & Casola, A. Broad-range antiviral activity of hydrogen sulfide against highly pathogenic RNA viruses. Sci. Rep.7, Articlenumber41029. 10.1038/srep41029 (2017). PubMed PMC
Powell, C. R., Dillon, K. M. & Matson, J. B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol.149, 110–123. 10.1016/j.bcp.2017.11.014 (2018). PubMed PMC
Levinn, C. M., Cerda, M. M. & Pluth, M. D. Activatable small-molecule hydrogen sulfide donors. Antioxid. Redox Signal.32, 96–109. 10.1089/ars.2019.7841 (2020). PubMed PMC
Kashfi, K. & Olson, K. R. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem. Pharmacol.85, 689–703. 10.1016/j.bcp.2012.10.019 (2013). PubMed PMC
Antoniadou, I. et al. Novel H2S-releasing bifunctional antihistamine molecules with improved antipruritic and reduced sedative actions. J. Med. Chem.66, 9607–9621. 10.1021/acs.jmedchem.3c00321 (2023). PubMed
Song, Z-L. et al. Progress and perspective on hydrogen sulfide donors and their biomedical applications. Med. Res. Rev.42, 1930–1977. 10.1002/med.21913 (2022). PubMed
Gyöngyösi, A. et al. Pharmacological characterization of EV-34, a new H2S-releasing ibuprofen derivative. Molecules26, 599–611. 10.3390/molecules26030599 (2021). PubMed PMC
Vass, V. et al. Reperfusion-induced injury and the effects of the dithioacetate type hydrogen sulfide donor ibuprofen derivative, BM-88, in isolated rat hearts. Eur. J. Pharm. Sci.185, 106449–106463. 10.1016/j.ejps.2023.106449 (2023). PubMed
Liu, R. & Orgel, L. E. Oxidative acylation using thioacids. Nature389, 52–54. 10.1038/37944 (1997). PubMed
Cerda, M. M. et al. Dithioesters: simple, tunable, cysteine-selective H2S donors. Chem. Sci.10, 1773–1779. 10.1039/C8SC04683B (2019). PubMed PMC
Tánczos, B. et al. Effects of H2S-donor ascorbic acid derivative and ischemia/reperfusion-induced injury in isolated rat hearts. Eur. J. Pharm. Sci.195, 106721–106736. 10.1016/j.ejps.2024.106721 (2024). PubMed
Guinan, M., Benckendorff, C., Smith, M. & Miller, G. J. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules25, 2050–2075. 10.3390/molecules25092050 (2020). PubMed PMC
Seley-Radtke, K. L. & Yates, M. K. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res.154, 66–86. 10.1016/j.antiviral.2018.04.004 (2018). PubMed PMC
Lougiakis, N. et al. Synthesis and pharmacological evaluation of novel adenine-hydrogen sulfide slow release hybrids designed as multi-target cardioprotective agents. J. Med. Chem.59, 1776–1790. 10.1021/acs.jmedchem.5b01223 (2016). PubMed
Beltowski, J., Guranowski, A., Jamroz-Wisniewska, A., Wolski, A. & Halas, K. Hydrogen sulfide (H2S)-mediated vasodilatory effect of nucleoside 5′-monophosphorothioates in perivascular adipose tissue. Can. J. Physiol. Pharmacol.93, 585–595. 10.1139/cjpp-2014-0543 (2015). PubMed
Beltowski, J., Guranowski, A. & Jamroz-Wisniewska, A. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties. Pharmacol. Res.81, 34–43. 10.1016/j.phrs.2014.01.003 (2014). PubMed
Zheng, Z. et al. Novel nucleoside-based antimalarial compounds. Bioorg. Med. Chem. Lett.26, 2861–2865. 10.1016/j.bmcl.2016.04.053 (2016). PubMed
Bege, M. et al. In vitro and in vivo antiplasmodial evaluation of sugar-modified nucleoside analogues. Sci. Rep.13, 12228. 10.1038/s41598-023-39541-4 (2023). PubMed PMC
Godoy, A. S. et al. Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease. Nucleic Acids Res.51, 5255–5270. 10.1093/nar/gkad314 (2023). PubMed PMC
Miles, R. W. et al. S-Homoadenosyl-L-cysteine and S-homoadenosyl-L-homocysteine. Synthesis and binding studies of non-hydrolyzed substrate analogues with S-adenosyl-L-homocysteine hydrolase. J. Org. Chem.67, 8258–8260. 10.1021/jo020478g (2002). PubMed
Bege, M. et al. Synthesis and oligomerization of cysteinyl nucleosides. Org. Biomol. Chem.18, 8161–8178. 10.1039/d0ob01890b (2020). PubMed
Friedel, H. A., Goa, K. L. & Benfield, P. S-Adenosyl-L-methionine. A review of its pharmacological properties and therapeutic potential in liver dysfunction and affective disorders in relation to its physiological role in cell metabolism. Drugs38, 389–416. 10.2165/00003495-198938030-00004 (1989). PubMed
Bege, M. et al. A low-temperature, photoinduced thiol-ene click reactio: a mild and effort for the synthesis of sugar-modified nucleosides. Org. Biomol. Chem.15, 9226–9233. 10.1039/C7OB02184D (2017). PubMed
Tomasz, J. in In Nucleic Acid Chemistry Part Two. 765–769 (eds Townsend, L. B. & Tipson, R. S.) (Wiley, 1978).
Kicsák, M. et al. A three-component reagent system for rapid and mild removal of O-, N- and S-trityl protecting groups. Org. Biomol. Chem.14, 3190–3192. 10.1039/C6OB00067C (2016). PubMed
Debreczeni, N. et al. Tightly linked morpholino-nucleoside chimeras: new, compact cationic oligonucleotide analogues. Org. Biomol. Chem.19, 8711–8721. 10.1039/D1OB01174J (2021). PubMed
Sugihara, S., Konegawa, N. & Maeda, Y. HCl·Et2O-Catalyzed metal-free RAFT cationic polymerization: one pot transformation from metal-free living cationic polymerization to RAFT radical polymerization. Macromolecules48, 5120–5131. 10.1021/acs.macromol.5b01071 (2015).
Gain, C., Song, S., Angtuaco, T., Satta, S. & Kelesidis, T. The role of oxidative stress in the pathogenesis of infections with coronaviruses. Front. Microbiol.13, 1111930. 10.3389/fmicb.2022.1111930 (2023). PubMed PMC
Schieber, M. & Chandel, N. S. ROS function in redox signaling and oxidative stress. Curr. Biol.24, 453–462. 10.1016/j.cub.2014.03.034 (2015). PubMed PMC
Shahid, A. & Bhatia, M. Hydrogen sulfide: a versatile molecule and therapeutic target in Health and diseases. Biomolecules14, 1145. 10.3390/biom14091145 (2024). PubMed PMC
Palamara, A. T. et al. Evidence for antiviral activity of glutathione: in vitro inhibition of herpes simplex virus type 1 replication. Antivir Res.27, 237–253. 10.1016/0166-3542(95)00008-A (1995). PubMed
Hati, S. & Bhattacharyya, S. Impact of thiol-disulfide balance on the binding of Covid-19 spike protein with angiotensin-converting enzyme 2 receptor. ACS Omega. 5, 16292–16298. 10.1021/acsomega.0c02125 (2020). PubMed PMC
Manček-Keber, M. et al. Disruption of disulfides within RBD of SARS-CoV-2 spike protein prevents fusion and represents a target for viral entry inhibition by registered drugs. FASEB J.35, e21651. 10.1096/fj.202100560R (2021). PubMed PMC
Alvarado-Tapias, E. et al. Adenosine induces ventricular arrhythmias in hearts with chronic chagas cardiomyopathy. Rev. Esp. Cardiol. (Engl Ed). 63, 478–482. 10.1016/S1885-5857(10)70097-9 (2010). PubMed
Guideri, F. et al. QTc interval prolongation during infusion with dipyridamole or adenosine. Int. J. Cardiol.48, 67–73. 10.1016/0167-5273(94)02209-2 (1995). PubMed
Guieu, R. et al. Adenosine and the Cardiovascular System: the good and the bad. J. Clin. Med.9, 1366. 10.3390/jcm9051366 (2020). PubMed PMC
Hori, M. & Kitakaze, M. Adenosine, the heart, and coronary circulation. Hypertension18, 565–574. 10.1161/01.HYP.18.5.565 (1991). PubMed
Liu, X. Y., Qian, L. L. & Wang, R. X. Hydrogen Sulfide-Induced Vasodilation: the involvement of vascular potassium channels. Front. Pharmacol.13, 911704. 10.3389/fphar.2022.911704 (2022). PubMed PMC
Kimura, T., Ho, I. K. & Yamamoto, I. Uridine receptor: Discovery and its involvement in sleep mechanism. Sleep24, 251–260. 10.1093/sleep/24.3.251 (2001). PubMed
Fujisawa, Y. & Mitsunobu, O. Preparation of Deoxyhalogenouridines, J. Chem. Soc. Chem. Commun. 201–201. 10.1039/C39730000201 (1973).
Marriott, J. H., Mottahedeh, M. & Reese, C. B. 9-(4-Methoxyphenyl)xanthen-9-thiol: a useful reagent for the preparation of thiols. Tetrahedron Lett.31, 7485–7488. 10.1016/S0040-4039(00)88523-8 (1990).
Shimamura, T. et al. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives-inter-laboratory evaluation study. Anal. Sci.30, 717–721. 10.2116/analsci.30.717 (2014). PubMed
Szőke, K. et al. Pharmacological evaluation of newly synthesized cannabidiol derivates on H9c2 cells. Antioxidants12, 1714–1729. 10.3390/antiox12091714 (2023). PubMed PMC
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol. Methods. 65, 55–63. 10.1016/0022-1759(83)90303-4 (1983). PubMed
Vecsernyes, M. et al. Alpha–melanocyte-stimulating hormone induces Vasodilation and exerts Cardioprotection through the Heme-Oxygenase Pathway in Rat hearts. J. Cardiovasc. Pharmacol.69, 286–297. 10.1097/FJC.0000000000000472 (2017). PubMed PMC
Percie du Sert et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol.18 (7), e3000410. 10.1371/journal.pbio.3000410 (2020). PubMed PMC