• This record comes from PubMed

Acute Effects of Fast vs. Slow Bench Press Repetitions with Equal Time Under Tension on Velocity, sEMG Activity, and Applied Force in the Bench Press Throw

. 2024 Dec 26 ; 10 (1) : . [epub] 20241226

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Background: The tempo of resistance exercises is known to influence performance outcomes, yet its specific effects on post-activation performance enhancement (PAPE) remain unclear. This study aimed to investigate the effects of fast versus slow repetitions at a load of 70% of one-repetition maximum (1-RM) in the bench press exercise, focusing on velocity, surface electromyographic (sEMG) activity, and applied force while equating time under tension on bench press throw performance. Methods: Eleven men (age: 23.5 ± 5.4 years, height: 1.79 ± 0.04 m, body mass: 79.1 ± 6.4 kg, maximum strength 1-RM: 91.0 ± 12.0 kg) participated. Two experimental conditions (FAST and SLOW) and one control (CTRL) were randomly assigned. Participants performed two sets of six repetitions as fast as possible (FAST condition) and two sets of three repetitions at a controlled tempo (SLOW condition) at half the concentric velocity of FAST, as determined in a preliminary session. Before and after the bench press participants performed bench press throws tests (Pre, 45 s, 4, 8, and 12 min after). Results: sEMG activity and peak force during the bench press were higher in FAST vs. SLOW conditioning activity (p < 0.001), with time under tension showing no significant differences between conditions (p > 0.05). Mean propulsive velocity (MPV) during the bench press throw improved equally in both FAST and SLOW conditions compared with baseline from the 4th to the 12th min of recovery (FAST: +6.8 ± 2.9% to +7.2 ± 3.3%, p < 0.01, SLOW: +4.0 ± 3.0% to +3.6 ± 4.5%, p < 0.01, respectively). Compared to the CTRL, both conditions exhibited improved MPV values from the 4th to 12th min (p < 0.01). Peak velocity improvements were observed only after the FAST condition compared to the baseline (p < 0.01) with no differences from SLOW. For all muscles involved and time points, sEMG activity during bench press throws was higher than CTRL in both experimental conditions (p < 0.01), with no differences between FAST and SLOW. Peak force increased in both FAST and SLOW conditions at all time points (p < 0.05), compared to CTRL. Conclusions: These findings suggest that post-activation performance enhancement is independent of movement tempo, provided that the resistive load and total time under tension of the conditioning activity are similar. This study provides valuable insights into the complex training method for athletes by demonstrating that varying tempo does not significantly affect post-activation performance enhancement when load and TUT are equated.

See more in PubMed

Cormier P., Freitas T.T., Loturco I., Turner A., Virgile A., Haff G.G., Blazevich A.J., Agar-Newman D., Henneberry M., Baker D.G., et al. Within Session Exercise Sequencing During Programming for Complex Training: Historical Perspectives, Terminology, and Training Considerations. Sports Med. 2022;52:2371–2389. doi: 10.1007/s40279-022-01715-x. PubMed DOI

Tsoukos A., Brown L.E., Veligekas P., Terzis G., Bogdanis G.C. Postactivation potentiation of bench press throw performance using velocity-based conditioning protocols with low and moderate loads. J. Hum. Kinet. 2019;68:81–98. doi: 10.2478/hukin-2019-0058. PubMed DOI PMC

Tsoukos A., Brown L.E., Terzis G., Veligekas P., Bogdanis G.C. Potentiation of Bench Press Throw Performance Using a Heavy Load and Velocity-Based Repetition Control. J. Strength Cond. Res. 2021;35:S72–S79. doi: 10.1519/JSC.0000000000003633. PubMed DOI

Bogdanis G.C., Tsoukos A., Brown L.E., Selima E., Veligekas P., Spengos K.M., Terzis G. Muscle Fiber and Performance Changes after Fast Eccentric Complex Training. Med. Sci. Sports Exerc. 2018;50:729–738. doi: 10.1249/MSS.0000000000001507. PubMed DOI

Ebben W.P. Complex Training: A Brief Review. J. Sports Sci. Med. 2002;1:42–46. PubMed PMC

Wang X., Lv C., Qin X., Ji S., Dong D. Effectiveness of plyometric training vs. complex training on the explosive power of lower limbs: A Systematic review. Front. Physiol. 2023;13:1061110. doi: 10.3389/fphys.2022.1061110. PubMed DOI PMC

Thapa R.K., Weldon A., Freitas T.T., Boullosa D., Afonso J., Granacher U., Ramirez-Campillo R. What do we Know about Complex-Contrast Training? A Systematic Scoping Review. Sports Med. Open. 2024;10:104. doi: 10.1186/s40798-024-00771-z. PubMed DOI PMC

Verkhoshansky Y., Tatyan V. Speed-strength preparation of future champions. Legk. Atlet. 1973;2:12–13.

Cormie P., McGuigan M.R., Newton R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011;41:125–146. doi: 10.2165/11538500-000000000-00000. PubMed DOI

Cormie P., Mccaulley G.O., McBride J.M. Power Versus Strength-Power Jump Squat Training. Med. Sci. Sports Exerc. 2007;39:996–1003. doi: 10.1097/mss.0b013e3180408e0c. PubMed DOI

Blazevich A.J., Babault N. Post-activation Potentiation Versus Post-activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019;10:1359. doi: 10.3389/fphys.2019.01359. PubMed DOI PMC

Tillin N.A., Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39:147–166. doi: 10.2165/00007256-200939020-00004. PubMed DOI

Tsoukos A., Bogdanis G.C., Terzis G., Veligekas P. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability. J. Strength Cond. Res. 2016;30:2250–2257. doi: 10.1519/JSC.0000000000001328. PubMed DOI

Gourgoulis V., Aggeloussis N., Kasimatis P., Mavromatis G., Garas A. Effect of a submaximal half-squats warm-up program on vertical jumping ability. J. Strength Cond. Res. 2003;17:342–344. PubMed

Ruben R.M., Molinari M.A., Bibbee C.A., Childress M.A., Harman M.S., Reed K.P., Haff G.G. The acute effects of an ascending squat protocol on performance during horizontal plyometric jumps. J. Strength Cond. Res. 2010;24:358–369. doi: 10.1519/JSC.0b013e3181cc26e0. PubMed DOI

Chiu L.Z.F., Fry A.C., Weiss L.W., Schilling B.K., Brown L.E., Smith S.L. Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 2003;17:671–677. doi: 10.1519/1533-4287(2003)0172.0.CO;2. PubMed DOI

Gullich A., Schmidtbleicher D. MVC-induced short-term potentiation of explosive force. New Stud. Athl. 1996;11:67–81.

Hamada T., Sale D.G., Macdougall J.D., Tarnopolsky M.A. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J. Appl. Physiol. 2000;88:2131–2137. doi: 10.1152/jappl.2000.88.6.2131. PubMed DOI

Terzis G., Spengos K., Karampatsos G., Manta P., Georgiadis G. Acute effect of drop jumping on throwing performance. J. Strength Cond. Res. 2009;23:2592–2597. doi: 10.1519/JSC.0b013e3181b1b1a3. PubMed DOI

Kilduff L.P., Bevan H.R., Kingsley M.I.C., Owen N.J., Bennett M.A., Bunce P.J., Hore A.M., Maw J.R., Cunningham D.J. Postactivation potentiation in professional rugby players: Optimal recovery. J. Strength Cond. Res. 2007;21:1134–1138. doi: 10.1519/00124278-200711000-00026. PubMed DOI

Crewther B.T., Kilduff L.P., Cook C.J., Middleton M.K., Bunce P.J., Yang G.-Z. The acute potentiating effects of back squats on athlete performance. J. Strength Cond. Res. 2011;25:3319–3325. doi: 10.1519/JSC.0b013e318215f560. PubMed DOI

Kilduff L.P., Owen N., Bevan H., Bennett M., Kingsley M.I.C., Cunningham D. Influence of recovery time on post-activation potentiation in professional rugby players. J. Sports Sci. 2008;26:795–802. doi: 10.1080/02640410701784517. PubMed DOI

Bevan H.R., Owen N.J., Cunningham D.J., Kingsley M.I.C., Kilduff L.P. Complex training in professional rugby players: Influence of recovery time on upper-body power output. J. Strength Cond. Res. 2009;23:1780–1785. doi: 10.1519/JSC.0b013e3181b3f269. PubMed DOI

Krzysztofik M., Wilk M., Stastny P., Golas A. Post-activation Performance Enhancement in the Bench Press Throw: A Systematic Review and Meta-Analysis. Front. Physiol. 2021;11:598628. doi: 10.3389/fphys.2020.598628. PubMed DOI PMC

Gallardo P., Giakas G., Sakkas G.K., Tsaklis P.V. Are Surface Electromyography Parameters Indicative of Post-Activation Potentiation/Post-Activation Performance Enhancement, in Terms of Twitch Potentiation and Voluntary Performance? A Systematic Review. J. Funct. Morphol. Kinesiol. 2024;9:106. doi: 10.3390/jfmk9020106. PubMed DOI PMC

Sotiropoulos K., Smilios I., Douda H., Christou M., Tokmakidis S.P. Contrast Loading: Power Output and Rest Interval Effects on Neuromuscular Performance. Int. J. Sports Physiol. Perform. 2014;9:567–574. doi: 10.1123/ijspp.2013-0181. PubMed DOI

Mina M.A., Blazevich A.J., Giakas G., Seitz L.B., Kay A.D. Chain-loaded variable resistance warm-up improves free-weight maximal back squat performance. Eur. J. Sport Sci. 2016;16:932–939. doi: 10.1080/17461391.2016.1199740. PubMed DOI

Sotiropoulos K., Smilios I., Christou M., Barzouka K., Spaias A., Douda H., Tokmakidis S.P. Effects of Warm-up on Vertical Jump Performance and Muscle Electrical Activity Using Half-Squats at Low and Moderate Intensity. J. Sports Sci. Med. 2010;1:326–331. PubMed PMC

Seitz L.B., Trajano G.S., Dal Maso F., Haff G.G., Blazevich A.J. Postactivation potentiation during voluntary contractions after continued knee extensor task-specific practice. Appl. Physiol. Nutr. Metab. 2015;40:230–237. doi: 10.1139/apnm-2014-0377. PubMed DOI

Esformes J.I., Keenan M., Moody J., Bampouras T.M. Effect of different types of conditioning contraction on upper body postactivation potentiation. J. Strength Cond. Res. 2011;25:143–148. doi: 10.1519/JSC.0b013e3181fef7f3. PubMed DOI

Tsoukos A., Brown L.E., Terzis G., Wilk M., Zajac A., Bogdanis G.C. Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise. Scand. J. Med. Sci. Sports. 2021;31:2071–2082. doi: 10.1111/sms.14027. PubMed DOI

Sakamoto A., Sinclair P.J., Moritani T. Muscle activations under varying lifting speeds and intensities during bench press. Eur. J. Appl. Physiol. 2012;112:1015–1025. doi: 10.1007/s00421-011-2059-0. PubMed DOI

Stastny P., Gołaś A., Blazek D., Maszczyk A., Wilk M., Pietraszewski P., Petr M., Uhlir P., Zając A. A systematic review of surface electromyography analyses of the bench press movement task. PLoS ONE. 2017;12:e0171632. doi: 10.1371/journal.pone.0171632. PubMed DOI PMC

Dietz-parsons P.R., Fry A.C., Herda T.J., Cabarkapa D., Lane M.T., Andre M.J. Attenuated Kinetic and Kinematic Properties During Very Slow Tempo Versus 1 Maximal Velocity Resistance Exercise. J. Adv. Sports Phys. Educ. 2021;4:143–150. doi: 10.36348/jaspe.2021.v04i06.002. DOI

Hatfield D.L., Kraemer W.J., Spiering B.A., Häkkinen K., Volek J.S., Shimano T., Spreuwenberg L.P.B., Silvestre R., Vingren J.L., Fragala M.S., et al. The impact of velocity of movement on performance factors in resistance exercise. J. Strength Cond. Res. 2006;20:760–766. doi: 10.1519/R-155552.1. PubMed DOI

Ide B.N., Leme T.C.F., Lopes C.R., Moreira A., Dechechi C.J., Sarraipa M.F., Da Mota G.R., Brenzikofer R., Macedo D.V. Time course of strength and power recovery after resistance training with different movement velocities. J. Strength Cond. Res. 2011;25:2025–2033. doi: 10.1519/JSC.0b013e3181e7393f. PubMed DOI

Tran Q.T., Docherty D., Behm D. The effects of varying time under tension and volume load on acute neuromuscular responses. Eur. J. Appl. Physiol. 2006;98:402–410. doi: 10.1007/s00421-006-0297-3. PubMed DOI

Lyons A., Bagley J.R. Can Resistance Training at Slow Versus Traditional Repetition Speeds Induce Comparable Hypertrophic and Strength Gains? Strength Cond. J. 2020;42:48–56. doi: 10.1519/SSC.0000000000000532. DOI

Wilk M., Krzysztofik M., Drozd M., Zajac A. Changes of power output and velocity during successive sets of the bench press with different duration of eccentric movement. Int. J. Sports Physiol. Perform. 2020;15:162–167. doi: 10.1123/ijspp.2019-0164. PubMed DOI

Tsoukos A., Bogdanis G.C. Lower Fatigue in the Eccentric than the Concentric Phase of a Bench Press Set Executed with Maximum Velocity to Failure Against Both Heavy and Light Loads. J. Hum. Kinet. 2023;88:119–129. doi: 10.5114/jhk/168792. PubMed DOI PMC

Tsoukos A., Krzysztofik M., Wilk M., Zajac A., Panagiotopoulos M.G., Psarras I.I., Petraki D.P., Terzis G., Bogdanis G.C. Fatigue and Metabolic Responses during Repeated Sets of Bench Press Exercise to Exhaustion at Different Ranges of Motion by. J. Hum. Kinet. 2024;91:61–76. doi: 10.5114/jhk/185524. PubMed DOI PMC

Coburn J., Malek M. NSCA Essentials of Personal Training. 2nd ed. Human Kinetics; Champaign, IL, USA: 2012.

Saeterbakken A.H., Loken J., Solstad T.E.J., Stien N., Prieske O., Scott S., Andersen V. Acute Effects of Barbell Bouncing and External Cueing on Power Output in Bench Press Throw in Resistance-Trained Men. Front. Physiol. 2022;13:899078. doi: 10.3389/fphys.2022.899078. PubMed DOI PMC

Sanchez-Medina L., Perez C.E., Gonzalez-Badillo J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010;31:123–129. doi: 10.1055/s-0029-1242815. PubMed DOI

Sato K., Sands W.A., Stone M.H. The reliability of accelerometry to measure weightlifting performance. Sports Biomech. 2012;11:524–531. doi: 10.1080/14763141.2012.724703. PubMed DOI

Sato K., Smith S., Sands W.A. Validation of an accelerometer for measuring sport performance. J. Strength Cond. Res. 2009;23:5–9. doi: 10.1519/JSC.0b013e3181876a01. PubMed DOI

Stegeman D., Hermens H. Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM) Enschede Roessingh Res. Dev. 2007;10:8–12.

Tsoukos A., Wilk M., Krzysztofik M., Zajac A., Bogdanis G.C. The Impact of Range of Motion on Applied Force Characteristics and Electromyographic Activity during Repeated Sets of Bench Press Exercise. J. Hum. Kinet. 2024;91:189–204. doi: 10.5114/jhk/186341. PubMed DOI PMC

Richardson J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011;6:135–147. doi: 10.1016/j.edurev.2010.12.001. DOI

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Routledge; London, UK: 2013.

Disselhorst-Klug C., Schmitz-Rode T., Rau G. Surface electromyography and muscle force: Limits in sEMG-force relationship and new approaches for applications. Clin. Biomech. 2009;24:225–235. doi: 10.1016/j.clinbiomech.2008.08.003. PubMed DOI

Jakobsen M.D., Sundstrup E., Andersen C.H., Aagaard P., Andersen L.L. Muscle activity during leg strengthening exercise using free weights and elastic resistance: Effects of ballistic vs controlled contractions. Hum. Mov. Sci. 2013;32:65–78. doi: 10.1016/j.humov.2012.07.002. PubMed DOI

Weigert M., Nitzsche N., Kunert F., Lösch C., Baumgärtel L., Schulz H. Acute Exercise-Associated Skin Surface Temperature Changes after Resistance Training with Different Exercise Intensities. Int. J. Kinesiol. Sports Sci. 2018;6:12–18. doi: 10.7575/aiac.ijkss.v.6n.1p.12. DOI

Kenny G.P., Reardon F.D., Zaleski W., Reardon M.L., Haman F., Ducharme M.B. Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J. Appl. Physiol. 2003;94:2350–2357. doi: 10.1152/japplphysiol.01107.2002. PubMed DOI

Bergh U., Ekblom B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol. Scand. 1979;107:33–37. doi: 10.1111/j.1748-1716.1979.tb06439.x. PubMed DOI

Sargeant A.J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1987;56:693–698. doi: 10.1007/BF00424812. PubMed DOI

Petrofsky J.S., Lind A.R. The influence of temperature on the amplitude and frequency components of the EMG during brief and sustained isometric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1980;44:189–200. doi: 10.1007/BF00421098. PubMed DOI

Gray S.R., De Vito G., Nimmo M.A., Farina D., Ferguson R.A. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R376–R382. doi: 10.1152/ajpregu.00291.2005. PubMed DOI

Gray S.R., Soderlund K., Watson M., Ferguson R.A. Skeletal muscle ATP turnover and single fibre ATP and PCr content during intense exercise at different muscle temperatures in humans. Pflug. Arch. Eur. J. Physiol. 2011;462:885–893. doi: 10.1007/s00424-011-1032-4. PubMed DOI

Brandon R., Howatson G., Strachan F., Hunter A.M. Neuromuscular response differences to power vs strength back squat exercise in elite athletes. Scand. J. Med. Sci. Sports. 2015;25:630–639. doi: 10.1111/sms.12289. PubMed DOI

Mc Dermott E.J., Balshaw T.G., Brooke-Wavell K., Maden-Wilkinson T.M., Folland J.P. Fast and ballistic contractions involve greater neuromuscular power production in older adults during resistance exercise. Eur. J. Appl. Physiol. 2022;122:1639–1655. doi: 10.1007/s00421-022-04947-x. PubMed DOI PMC

Zaras N., Stasinaki A.-N., Krase A., Methenitis S., Karampat- sos G., Georgiadis G., Spengos K., Terzis G. Effects of Tapering with Light vs. Heavy Loads on Track and Field Throwing Performance. J. Strength Cond. Res. 2014;28:3484–3495. doi: 10.1519/JSC.0000000000000566. PubMed DOI

Burger B., Wöllner C. The challenge of being slow: Effects of tempo, laterality, and experience on dance movement consistency. J. Mot. Behav. 2023;55:550–563. doi: 10.1080/00222895.2021.1896469. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...