Post-activation Performance Enhancement in the Bench Press Throw: A Systematic Review and Meta-Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu systematický přehled, časopisecké články
PubMed
33519506
PubMed Central
PMC7844331
DOI
10.3389/fphys.2020.598628
Knihovny.cz E-zdroje
- Klíčová slova
- ballistic exercise, explosive strength, post-activation potentiation (PAP), power output (PO), resistance training, sport performance, strength training,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Background: Mechanical power output is recognized as a critical characteristic of an athlete with regard to superior performance during a competition. It seems fully justified that ballistic exercises, in which the external load is projected into a flight phase, as in the bench press throw (BPT), are the most commonly prescribed exercises for the development of power output. In addition, the muscular phenomenon known as post-activation performance enhancement (PAPE), which is an acute improvement in strength and power performance as a result of recent voluntary contractile history, has become the focus of many strength and conditioning training programs. Although the PAPE phenomenon is widely used in the upper-body training regimens, there are still several issues regarding training variables that facilitate the greatest increase in power output and need to be resolved. Objective: The purposes of this meta-analysis were to determine the effect of performing a conditioning activity (CA) on subsequent BPT performances and the influence of different types of CA, intra-complex rest intervals, and intensities during the CA on the upper-body PAPE effect in resistance-trained men. Methods: A search of electronic databases (MEDLINE, PubMed, and SPORTDiscus) was conducted to identify all studies that investigated the PAPE in the BPT up to August 2020. Eleven articles, which met the inclusion criteria, were consequently included for quality assessment and data extraction. All studies included 174 resistance-trained men [age: 25.2 ± 2.1 years; weight: 88.4 ± 7.5 kg; height: 1.82 ± 0.03 m; bench press (BP) relative strength: 1.31 ± 0.14 kg ± kg-1] as participants. Meta-analyses of standardized mean effect size (ES) between pre-CA mean and post-CA mean from individual studies were conducted using the random-effects model. Results: The effect of PAPE in the BPT was small (ES = 0.33; p < 0.01). The BP exercise as a CA at an intensity of 60-84% one-repetition maximum (1RM) (ES = 0.43) induced slightly greater PAPE effect than a ballistic-plyometric (ES = 0.29) and a BP exercise at ≥85% 1RM and at >100% 1RM as well as a concentric-only BP (ES = 0.23 and 0.22; ES = 0.11, respectively). A single set (ES = 0.37) of the CA resulted in a slightly greater effect than a multiple set (ES = 0.29). Moderate rest intervals induced a slightly greater PAPE effect for intensity below 85% 1RM (5-7 min, ES = 0.48) than shorter (0.15-4 min, ES = 0.4) and longer (≥8 min, ES = 0.36) intra-complex rest intervals. Considering an intensity above 85% 1RM during the CA, a moderate rest interval resulted in a similar PAPE effect (5-7 min, ES = 0.3) compared with longer (8 min, ES = 0.29) intra-complex rest interval, whereas shorter rest intervals resulted in a negative effect on BPT performance (0.15-4 min, ES = -0.13). Conclusion: The presented meta-analysis shows that performing a CA induces a small PAPE effect for the BPT performance in resistance-trained men. Individuals seeking to improve their BPT performance should consider preceding them with a single set of the BP exercise at moderate intensity (60-84% 1RM), performed 5-7 min before the explosive activity.
Zobrazit více v PubMed
Alves R. R., Viana R. B., Silva M. H., Guimarães T. C., Vieira C. A., Santos D. A. T., et al. (2019). Postactivation potentiation improves performance in a resistance training session in trained men. J. Strength Cond. Res. 1 10.1519/JSC.0000000000003367. [Epub ahead of print]. PubMed DOI
Bevan H. R., Owen N. J., Cunningham D. J., Kingsley M. I., Kilduff L. P. (2009). Complex training in professional rugby players: influence of recovery time on upper-body power output. J. Strength Cond. Res. 23, 1780–1785. 10.1519/JSC.0b013e3181b3f269 PubMed DOI
Blazevich A. J., Babault N. (2019). Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front. Physiol. 10, 1359. 10.3389/fphys.2019.01359 PubMed DOI PMC
Boullosa D., Beato M., Dello Iacono A., Cuenca-Fernández F., Doma K., Schumann M., Zagatto A. M., et al. . (2020). A new taxonomy for post-activation potentiation in sport. Int. J. Sports Physiol. Perform. 15, 1197–1200. 10.1123/ijspp.2020-0350 PubMed DOI
Brandenburg J. P. (2005). The acute effects of prior dynamic resistance exercise using different loads on subsequent upper-body explosive performance in resistance-trained men. J. Strength Cond. Res. 19, 427. 10.1519/R-15074.1 PubMed DOI
Chiu L. Z. F., Barnes J. L. (2003). The fitness-fatigue model revisited: implications for planning short- and long-term training. Strength Cond. J. 25, 42–51. 10.1519/00126548-200312000-00007 DOI
Chiu L. Z. F., Fry A. C., Weiss L. W., Schilling B. K., Brown L. E., Smith S. L. (2003). Postactivation potentiation response in athletic and recreationally trained individuals. J. Strength Cond. Res. 17, 671–677. 10.1519/00124278-200311000-00008 PubMed DOI
Cohen J. (2013). Statistical Power Analysis for the Behavioral Sciences. Burlington: Elsevier Science; (accessed March 21, 2020).
Cormie P., McGuigan M. R., Newton R. U. (2011). Developing maximal neuromuscular power: part 2 - training considerations for improving maximal power production. Sports Med. Auckl. NZ 41, 125–146. 10.2165/11538500-000000000-00000 PubMed DOI
Cronin J. B., Owen G. J. (2004). Upper-body strength and power assessment in women using a chest pass. J. Strength Cond. Res. 18, 401. 10.1519/12072.1 PubMed DOI
Cuenca-Fernández F., Smith I. C., Jordan M. J., MacIntosh B. R., López-Contreras G., Arellano R., et al. . (2017). Nonlocalized postactivation performance enhancement (PAPE) effects in trained athletes: a pilot study. Appl. Physiol. Nutr. Metab. 42, 1122–1125. 10.1139/apnm-2017-0217 PubMed DOI
De Ruiter C. J., De Haan A. (2000). Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflüg. Arch. Eur. J. Physiol. 440, 163–170. 10.1007/s004240000284 PubMed DOI
Dobbs W. C., Tolusso D. V., Fedewa M. V., Esco M. R. (2019). Effect of postactivation potentiation on explosive vertical jump: a systematic review and meta-analysis. J. Strength Cond. Res. 33, 2009–2018. 10.1519/JSC.0000000000002750 PubMed DOI
Docherty D., Hodgson M. J. (2007). The application of postactivation potentiation to elite sport. Int. J. Sports Physiol. Perform. 2, 439–444. 10.1123/ijspp.2.4.439 PubMed DOI
Esformes J. I., Keenan M., Moody J., Bampouras T. M. (2011). Effect of different types of conditioning contraction on upper body postactivation potentiation. J. Strength Cond. Res. 25, 143–148. 10.1519/JSC.0b013e3181fef7f3 PubMed DOI
Evetovich T. K., Conley D. S., McCawley P. F. (2015). Postactivation potentiation enhances upper- and lower-body athletic performance in collegiate male and female athletes. J. Strength Cond. Res. 29, 336–342. 10.1519/JSC.0000000000000728 PubMed DOI
Farup J., Sørensen H. (2010). Postactivation potentiation: upper body force development changes after maximal force intervention. J. Strength Cond. Res. 24, 1874–1879. 10.1519/JSC.0b013e3181ddb19a PubMed DOI
Frost D. M., Cronin J., Newton R. U. (2010). A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med. 40, 303–326. 10.2165/11319420-000000000-00000 PubMed DOI
Gilbert G., Lees A. (2005). Changes in the force development characteristics of muscle following repeated maximum force and power exercise. Ergonomics 48, 1576–1584. 10.1080/00140130500101163 PubMed DOI
Gołaś A., Maszczyk A., Zajac A., Mikołajec K., Stastny P. (2016). Optimizing post activation potentiation for explosive activities in competitive sports. J. Hum. Kinet. 52, 95–106. 10.1515/hukin-2015-0197 PubMed DOI PMC
Gouvêa A. L., Fernandes I. A., César E. P., Silva W. A. B., Gomes P. S. C. (2013). The effects of rest intervals on jumping performance: a meta-analysis on post-activation potentiation studies. J. Sports Sci. 31, 459–467. 10.1080/02640414.2012.738924 PubMed DOI
Grgic J., Sabol F., Venier S., Tallis J., Schoenfeld B. J., Coso J. D., et al. . (2019). Caffeine supplementation for powerlifting competitions: an evidence-based approach. J. Hum. Kinet. 68, 37–48. 10.2478/hukin-2019-0054 PubMed DOI PMC
Guerra M. A., Jr., Caldas L. C., De Souza H. L., Vitzel K. F., Cholewa J. M., Duncan M. J., et al. . (2018). The acute effects of plyometric and sled towing stimuli with and without caffeine ingestion on vertical jump performance in professional soccer players. J. Int. Soc. Sports Nutr. 15, 51. 10.1186/s12970-018-0258-3 PubMed DOI PMC
Haff G. G., Nimphius S. (2012). Training principles for power. Strength Cond. J. 34, 2–12. 10.1519/SSC.0b013e31826db467 DOI
Hedges L. V., Olkin I. (2014). Statistical Methods for Meta-Analysis. Saint Louis: Elsevier Science; Available online at: http://qut.eblib.com.au/patron/FullRecord.aspx?p=1901162 (accessed August 3, 2020).
Higgins J. P. T., Thompson S. G. (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558. 10.1002/sim.1186 PubMed DOI
Ivanova T., Garland S. J., Miller K. J. (1997). Motor unit recruitment and discharge behavior in movements and isometric contractions. Muscle Nerve 20, 867–874. 10.1002/(SICI)1097-4598(199707)20:7<867::AID-MUS11>3.0.CO;2-P PubMed DOI
Kilduff L. P., Bevan H. R., Kingsley M. I. C., Owen N. J., Bennett M. A., Bunce P. J., et al. . (2007). Postactivation potentiation in professional rugby players: optimal recovery. J. Strength Cond. Res. 21, 1134. 10.1519/00124278-200711000-00026 PubMed DOI
Krzysztofik M., Wilk M. (2020). The effects of plyometric conditioning on post-activation bench press performance. J. Hum. Kinet. 74, 99–108. 10.2478/hukin-2020-0017 PubMed DOI PMC
Krzysztofik M., Wilk M., Filip A., Zmijewski P., Zajac A., Tufano J. J. (2020a). Can post-activation performance enhancement (PAPE) improve resistance training volume during the bench press exercise? Int. J. Environ. Res. Public. Health 17, 2554. 10.3390/ijerph17072554 PubMed DOI PMC
Krzysztofik M., Wilk M., Golas A., Lockie R. G., Maszczyk A., Zajac A. (2020b). Does eccentric-only and concentric-only activation increase power output? Med. Sci. Sports Exerc. 52, 484–489. 10.1249/MSS.0000000000002131 PubMed DOI
Lake J., Lauder M., Smith N., Shorter K. (2012). A comparison of ballistic and nonballistic lower-body resistance exercise and the methods used to identify their positive lifting phases. J. Appl. Biomech. 28, 431–437. 10.1123/jab.28.4.431 PubMed DOI
Liossis L. D., Forsyth J., Liossis C., Tsolakis C. (2013). The acute effect of upper-body complex training on power output of martial art athletes as measured by the bench press throw exercise. J. Hum. Kinet. 39, 167–175. 10.2478/hukin-2013-0079 PubMed DOI PMC
Maloney S. J., Turner A. N., Fletcher I. M. (2014). Ballistic exercise as a pre-activation stimulus: a review of the literature and practical applications. Sports Med. 44, 1347–1359. 10.1007/s40279-014-0214-6 PubMed DOI
McGowan C. J., Pyne D. B., Thompson K. G., Rattray B. (2015). Warm-up strategies for sport and exercise: mechanisms and applications. Sports Med. 45, 1523–1546. 10.1007/s40279-015-0376-x PubMed DOI
Moher D., Liberati A., Tetzlaff J., Altman D. G., The P.R.I.S.M.A. Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 10.1371/journal.pmed.1000097 PubMed DOI PMC
Morris S. B. (2008). Estimating effect sizes from pretest-posttest-control group designs. Organ. Res. Methods 11, 364–386. 10.1177/1094428106291059 DOI
Newton R. U., Murphy A. J., Humphries B. J., Wilson G. J., Kraemer W. J., Häkkinen K. (1997). Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur. J. Appl. Physiol. 75, 333–342. 10.1007/s004210050169 PubMed DOI
Pyne D. B., Mujika I., Reilly T. (2009). Peaking for optimal performance: research limitations and future directions. J. Sports Sci. 27, 195–202. 10.1080/02640410802509136 PubMed DOI
Racinais S., Cocking S., Périard J. D. (2017). Sports and environmental temperature: from warming-up to heating-up. Temperature 4, 227–257. 10.1080/23328940.2017.1356427 PubMed DOI PMC
Rassier D. E., Macintosh B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 33, 499–508. 10.1590/S0100-879X2000000500003 PubMed DOI
Requena B., García I., Requena F., Sáez-Sáez de Villarreal E., Cronin J. B. (2011). Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting. J. Strength Cond. Res. 25, 2193–2204. 10.1519/JSC.0b013e3181e86132 PubMed DOI
Sakamoto A., Kuroda A., Sinclair P. J., Naito H., Sakuma K. (2018). The effectiveness of bench press training with or without throws on strength and shot put distance of competitive university athletes. Eur. J. Appl. Physiol. 118, 1821–1830. 10.1007/s00421-018-3917-9 PubMed DOI
Sarabia J. M., Moya-Ramón M., Hernández-Davó J. L., Fernandez-Fernandez J., Sabido R. (2017). The effects of training with loads that maximise power output and individualised repetitions vs. traditional power training. PLoS One 12, e0186601. 10.1371/journal.pone.0186601 PubMed DOI PMC
Seitz L. B., Haff G. G. (2016). Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 46, 231–240. 10.1007/s40279-015-0415-7 PubMed DOI
Soriano M. A., Jiménez-Reyes P., Rhea M. R., Marín P. J. (2015). The optimal load for maximal power production during lower-body resistance exercises: a meta-analysis. Sports Med. 45, 1191–1205. 10.1007/s40279-015-0341-8 PubMed DOI
Sterne J. A., Hernán M. A., Reeves B. C., Savović J., Berkman N. D., Viswanathan M., et al. . (2016). ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355, i4919. 10.1136/bmj.i4919 PubMed DOI PMC
Suchomel T. J., Nimphius S., Bellon C. R., Stone M. H. (2018). The importance of muscular strength: training considerations. Sports Med. 48, 765–785. 10.1007/s40279-018-0862-z PubMed DOI
Thomas J. R., French K. E. (1986). The use of meta-analysis in exercise and sport: a tutorial. Res. Q. Exerc. Sport 57, 196–204. 10.1080/02701367.1986.10605397 DOI
Tillin N. A., Bishop D. (2009). Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 39, 147–166. 10.2165/00007256-200939020-00004 PubMed DOI
Tsoukos A., Brown L. E., Terzis G., Veligekas P., Bogdanis G. C. (2020). Potentiation of bench press throw performance using a heavy load and velocity-based repetition control. J. Strength Cond. Res. 10.1519/JSC.0000000000003633. [Epub ahead of print]. PubMed DOI
Tsoukos A., Brown L. E., Veligekas P., Terzis G., Bogdanis G. C. (2019). Postactivation potentiation of bench press throw performance using velocity-based conditioning protocols with low and moderate loads. J. Hum. Kinet. 68, 81–98. 10.2478/hukin-2019-0058 PubMed DOI PMC
Ulrich G., Parstorfer M. (2017). Effects of plyometric versus concentric and eccentric conditioning contractions on upper-body postactivation potentiation. Int. J. Sports Physiol. Perform. 12, 736–741. 10.1123/ijspp.2016-0278 PubMed DOI
Van Cutsem M., Duchateau J., Hainaut K. (1998). Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J. Physiol. 513, 295–305. 10.1111/j.1469-7793.1998.295by.x PubMed DOI PMC
Wang C.-C., Yang M.-T., Lu K.-H., Chan K.-H. (2016). The effects of creatine supplementation on explosive performance and optimal individual postactivation potentiation time. Nutrients 8, 143. 10.3390/nu8030143 PubMed DOI PMC
West D. J., Cunningham D. J., Crewther B. T., Cook C. J., Kilduff L. P. (2013). Influence of ballistic bench press on upper body power output in professional rugby players. J. Strength Cond. Res. 27, 2282–2287. 10.1519/JSC.0b013e31827de6f1 PubMed DOI
Wilcox J., Larson R., Brochu K. M., Faigenbaum A. D. (2006). Acute explosive-force movements enhance bench-press performance in athletic men. Int. J. Sports Physiol. Perform. 1, 261–269. 10.1123/ijspp.1.3.261 PubMed DOI
Wilk M., Krzysztofik M., Filip A., Szkudlarek A., Lockie R. G., Zajac A. (2020). Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public Health 17, 3752. 10.3390/ijerph17113752 PubMed DOI PMC
Wilson J. M., Duncan N. M., Marin P. J., Brown L. E., Loenneke J. P., Wilson S. M. C., et al. . (2013). Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J. Strength Cond. Res. 27, 854–859. 10.1519/JSC.0b013e31825c2bdb PubMed DOI
Effects of whole-body vibration warm-up on subsequent jumping and running performance
Effects of Unilateral Conditioning Activity on Acute Performance Enhancement: A Systematic Review
Acute Effects of Percussive Massage Treatment on Drop Jump Performance and Achilles Tendon Stiffness
Post-Isometric Back Squat Performance Enhancement of Squat and Countermovement Jump