Enhancement of Countermovement Jump Performance Using a Heavy Load with Velocity-Loss Repetition Control in Female Volleyball Players

. 2021 Nov 02 ; 18 (21) : . [epub] 20211102

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34770042

Although velocity control in resistance training is widely studied, its utilization in eliciting post-activation performance enhancement (PAPE) responses receives little attention. Therefore, this study aimed to evaluate the effectiveness of heavy-loaded barbell squats (BS) with velocity loss control conditioning activity (CA) on PAPE in subsequent countermovement jump (CMJ) performance. Sixteen resistance-trained female volleyball players participated in this study (age: 24 ± 5 yrs.; body mass: 63.5 ± 5.2 kg; height: 170 ± 6 cm; relative BS one-repetition maximum (1RM): 1.45 ± 0.19 kg/body mass). Each participant performed two different conditions: a set of the BS at 80% 1 RM with repetitions performed until a mean velocity loss of 10% as the CA or a control condition without CA (CNTRL). To assess changes in jump height (JH) and relative mean power output (MP), the CMJ was performed 5 min before and throughout the 10 min after the CA. The two-way analysis of variance with repeated measures showed a significant main effect of condition (p = 0.008; η2 = 0.387) and time (p < 0.0001; η2 = 0.257) for JH. The post hoc test showed a significant decrease in the 10th min in comparison to the value from baseline (p < 0.006) for the CNTRL condition. For the MP, a significant interaction (p = 0.045; η2 = 0.138) was found. The post hoc test showed a significant decrease in the 10th min in comparison to the values from baseline (p < 0.006) for the CNTRL condition. No significant differences were found between all of the time points and the baseline value for the CA condition. The CA used in the current study fails to enhance subsequent countermovement jump performance in female volleyball players. However, the individual analysis showed that 9 out of the 16 participants (56%) responded positively to the applied CA, suggesting that the PAPE effect may be individually dependent and should be carefully verified before implementation in a training program.

Zobrazit více v PubMed

Blazevich A.J., Babault N. Post-Activation Potentiation versus Post-Activation Performance Enhancement in Humans: Historical Perspective, Underlying Mechanisms, and Current Issues. Front. Physiol. 2019;10:1359. doi: 10.3389/fphys.2019.01359. PubMed DOI PMC

Seitz L.B., Haff G.G. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016;46:231–240. doi: 10.1007/s40279-015-0415-7. PubMed DOI

Esformes J.I., Keenan M., Moody J., Bampouras T.M. Effect of Different Types of Conditioning Contraction on Upper Body Postactivation Potentiation. J. Strength Cond. Res. 2011;25:143–148. doi: 10.1519/JSC.0b013e3181fef7f3. PubMed DOI

Bogdanis G.C., Tsoukos A., Veligekas P., Tsolakis C., Terzis G. Effects of Muscle Action Type with Equal Impulse of Conditioning Activity on Postactivation Potentiation. J. Strength Cond. Res. 2014;28:2521–2528. doi: 10.1519/JSC.0000000000000444. PubMed DOI

Krzysztofik M., Wilk M., Golas A., Lockie R.G., Maszczyk A., Zajac A. Does Eccentric-Only and Concentric-Only Activation Increase Power Output? Med. Sci. Sports Exerc. 2020;52:484–489. doi: 10.1249/MSS.0000000000002131. PubMed DOI

Krzysztofik M., Wilk M., Lockie R.G., Golas A., Zajac A., Bogdanis G.C. Postactivation Performance Enhancement of Concentric Bench Press Throw after Eccentric-Only Conditioning Exercise. J. Strength Cond. Res. 2020 doi: 10.1519/JSC.0000000000003802. PubMed DOI

Matusiński A., Pietraszewski P., Krzysztofik M., Gołaś A. The Effects of Resisted Post-Activation Sprint Performance Enhancement in Elite Female Sprinters. Front. Physiol. 2021;12:651659. doi: 10.3389/fphys.2021.651659. PubMed DOI PMC

Khamoui A.V., Brown L.E., Coburn J.W., Judelson D.A., Uribe B.P., Nguyen D., Tran T., Eurich A.D., Noffal G.J. Effect of Potentiating Exercise Volume on Vertical Jump Parameters in Recreationally Trained Men. J. Strength Cond. Res. 2009;23:1465–1469. doi: 10.1519/JSC.0b013e3181a5bcdd. PubMed DOI

Kilduff L.P., Bevan H.R., Kingsley M.I.C., Owen N.J., Bennett M.A., Bunce P.J., Hore A.M., Maw J.R., Cunningham D.J. Postactivation Potentiation in Professional Rugby Players: Optimal Recovery. J. Strength Cond. Res. 2007;21:1134. doi: 10.1519/00124278-200711000-00026. PubMed DOI

Wilson J.M., Duncan N.M., Marin P.J., Brown L.E., Loenneke J.P., Wilson S.M.C., Jo E., Lowery R.P., Ugrinowitsch C. Meta-Analysis of Postactivation Potentiation and Power: Effects of Conditioning Activity, Volume, Gender, Rest Periods, and Training Status. J. Strength Cond. Res. 2013;27:854–859. doi: 10.1519/JSC.0b013e31825c2bdb. PubMed DOI

Krzysztofik M., Wilk M., Filip A., Zmijewski P., Zajac A., Tufano J.J. Can Post-Activation Performance Enhancement (PAPE) Improve Resistance Training Volume during the Bench Press Exercise? Int. J. Environ. Res. Public Health. 2020;17:2554. doi: 10.3390/ijerph17072554. PubMed DOI PMC

Krzysztofik M., Wilk M., Stastny P., Golas A. Post-Activation Performance Enhancement in the Bench Press Throw: A Systematic Review and Meta-Analysis. Front. Physiol. 2021;11:598628. doi: 10.3389/fphys.2020.598628. PubMed DOI PMC

Krzysztofik M., Wilk M. The Effects of Plyometric Conditioning on Post-Activation Bench Press Performance. J. Hum. Kinet. 2020;74:99–108. doi: 10.2478/hukin-2020-0017. PubMed DOI PMC

Rassier D.E., Macintosh B.R. Coexistence of Potentiation and Fatigue in Skeletal Muscle. Braz. J. Med Biol. Res. 2000;33:499–508. doi: 10.1590/S0100-879X2000000500003. PubMed DOI

Tsoukos A., Brown L.E., Veligekas P., Terzis G., Bogdanis G.C. Postactivation Potentiation of Bench Press Throw Performance Using Velocity-Based Conditioning Protocols with Low and Moderate Loads. J. Hum. Kinet. 2019;68:81–98. doi: 10.2478/hukin-2019-0058. PubMed DOI PMC

Tsoukos A., Brown L.E., Terzis G., Veligekas P., Bogdanis G.C. Potentiation of Bench Press Throw Performance Using a Heavy Load and Velocity-Based Repetition Control. J. Strength Cond. Res. 2021;35:S72–S79. doi: 10.1519/JSC.0000000000003633. PubMed DOI

Rodríguez-Rosell D., Yáñez-García J.M., Mora-Custodio R., Pareja-Blanco F., Ravelo-García A.G., Ribas-Serna J., González-Badillo J.J. Velocity-Based Resistance Training: Impact of Velocity Loss in the Set on Neuromuscular Performance and Hormonal Response. Appl. Physiol. Nutr. Metab. 2020;45:817–828. doi: 10.1139/apnm-2019-0829. PubMed DOI

Krzysztofik M., Matykiewicz P., Celebanska D., Jarosz J., Gawel E., Zwierzchowska A. The Acute Post-Activation Performance Enhancement of the Bench Press Throw in Disabled Sitting Volleyball Athletes. Int. J. Environ. Res. Public Health. 2021;18:3818. doi: 10.3390/ijerph18073818. PubMed DOI PMC

Pincivero D.M., Coelho A.J., Campy R.M. Perceived Exertion and Maximal Quadriceps Femoris Muscle Strength during Dynamic Knee Extension Exercise in Young Adult Males and Females. Eur. J. Appl. Physiol. 2003;89:150–156. doi: 10.1007/s00421-002-0768-0. PubMed DOI

Pincivero D.M., Gandaio C.B., Ito Y. Gender-Specific Knee Extensor Torque, Flexor Torque, and Muscle Fatigue Responses during Maximal Effort Contractions. Eur. J. Appl. Physiol. 2003;89:134–141. doi: 10.1007/s00421-002-0739-5. PubMed DOI

Mihic S., MacDONALD J.R., McKENZIE S., Tarnopolsky M.A. Acute Creatine Loading Increases Fat-Free Mass, but Does Not Affect Blood Pressure, Plasma Creatinine, or CK Activity in Men and Women. Med. Sci. Sports Exerc. 2000;32:291. doi: 10.1097/00005768-200002000-00007. PubMed DOI

Marotta N., Demeco A., de Scorpio G., Indino A., Iona T., Ammendolia A. Late Activation of the Vastus Medialis in Determining the Risk of Anterior Cruciate Ligament Injury in Soccer Players. J. Sport Rehabil. 2020;29:952–955. doi: 10.1123/jsr.2019-0026. PubMed DOI

Marotta N., Demecon A., Moggio L., Isabello L., Iona T., Ammendolia A. Correlation between Dynamic Knee Valgus and Quadriceps Activation Time in Female Athletes. J. Phys. Educ. Sport. 2020;20:2508–2512.

Rixon K.P., Lamont H.S., Bemben M.G. Influence of Type of Muscle Contraction, Gender, and Lifting Experience on Postactivation Potentiation Performance. J. Strength Cond. Res. 2007;21:500. doi: 10.1519/R-18855.1. PubMed DOI

Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., Wilk M. The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. Int. J. Environ. Res. Public Health. 2020;17:4674. doi: 10.3390/ijerph17134674. PubMed DOI PMC

Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Coso J.D., Tufano J.J. The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results. J. Hum. Kinet. 2020;72:151–159. doi: 10.2478/hukin-2020-0001. PubMed DOI PMC

Wilk M., Gepfert M., Krzysztofik M., Mostowik A., Filip A., Hajduk G., Zajac A. Impact of Duration of Eccentric Movement in the One-Repetition Maximum Test Result in the Bench Press among Women. J. Sports Sci. Med. 2020;19:317–322. PubMed PMC

Martínez-Cava A., Morán-Navarro R., Sánchez-Medina L., González-Badillo J.J., Pallarés J.G. Velocity- and Power-Load Relationships in the Half, Parallel and Full Back Squat. J. Sports Sci. 2019;37:1088–1096. doi: 10.1080/02640414.2018.1544187. PubMed DOI

Pallarés J.G., Sánchez-Medina L., Pérez C.E., De La Cruz-Sánchez E., Mora-Rodriguez R. Imposing a Pause between the Eccentric and Concentric Phases Increases the Reliability of Isoinertial Strength Assessments. J. Sports Sci. 2014;32:1165–1175. doi: 10.1080/02640414.2014.889844. PubMed DOI

Sánchez-Medina L., Pallarés J., Pérez C., Morán-Navarro R., González-Badillo J. Estimation of Relative Load From Bar Velocity in the Full Back Squat Exercise. Sports Med. Int. Open. 2017;1:E80–E88. doi: 10.1055/s-0043-102933. PubMed DOI PMC

Wilk M., Krzysztofik M., Bialas M. The Influence of Compressive Gear on Maximal Load Lifted in Competitive Powerlifting. Biol. Sport. 2020;37:437–441. doi: 10.5114/biolsport.2021.100145. PubMed DOI PMC

Banyard H.G., Nosaka K., Sato K., Haff G.G. Validity of Various Methods for Determining Velocity, Force, and Power in the Back Squat. Int. J. Sports Physiol. Perform. 2017;12:1170–1176. doi: 10.1123/ijspp.2016-0627. PubMed DOI

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Elsevier Science; Burlington, ON, Canada: 2013.

Chiu L.Z.F., Fry A.C., Weiss L.W., Schilling B.K., Brown L.E., Smith S.L. Postactivation Potentiation Response in Athletic and Recreationally Trained Individuals. J. Strength Cond. Res. 2003;17:671–677. doi: 10.1519/1533-4287(2003)0172.0.co;2. PubMed DOI

Evetovich T.K., Conley D.S., McCawley P.F. Postactivation Potentiation Enhances Upper- and Lower-Body Athletic Performance in Collegiate Male and Female Athletes. J. Strength Cond. Res. 2015;29:336–342. doi: 10.1519/JSC.0000000000000728. PubMed DOI

McCann M.R., Flanagan S.P. The Effects of Exercise Selection and Rest Interval on Postactivation Potentiation of Vertical Jump Performance. J. Strength Cond. Res. 2010;24:1285–1291. doi: 10.1519/JSC.0b013e3181d6867c. PubMed DOI

Hamada T., Sale D.G., MacDougall J.D., Tarnopolsky M.A. Postactivation Potentiation, Fiber Type, and Twitch Contraction Time in Human Knee Extensor Muscles. J. Appl. Physiol. 2000;88:2131–2137. doi: 10.1152/jappl.2000.88.6.2131. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...