Antiviral Activity of Uridine Derivatives of 2-Deoxy Sugars against Tick-Borne Encephalitis Virus

. 2019 Mar 21 ; 24 (6) : . [epub] 20190321

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30901934

Grantová podpora
UMO-2015/19/D/NZ6/01717 Narodowe Centrum Nauki

Tick-borne encephalitis virus (TBEV) is a causative agent of tick-borne encephalitis (TBE), one of the most important human infections involving the central nervous system. Although effective vaccines are available on the market, they are recommended only in endemic areas. Despite many attempts, there are still no specific antiviral therapies for TBEV treatment. Previously, we synthesized a series of uridine derivatives of 2-deoxy sugars and proved that some compounds show antiviral activity against viruses from the Flaviviridae and Orthomyxoviridae families targeting the late steps of the N-glycosylation process, affecting the maturation of viral proteins. In this study, we evaluated a series of uridine derivatives of 2-deoxy sugars for their antiviral properties against two strains of the tick-borne encephalitis virus; the highly virulent TBEV strain Hypr and the less virulent strain Neudoerfl. Four compounds (2, 4, 10, and 11) showed significant anti-TBEV activity with IC50 values ranging from 1.4 to 10.2 µM and low cytotoxicity. The obtained results indicate that glycosylation inhibitors, which may interact with glycosylated membrane TBEV E and prM proteins, might be promising candidates for future antiviral therapies against TBEV.

Zobrazit více v PubMed

Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI

Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat. Commun. 2018;9:436. doi: 10.1038/s41467-018-02882-0. PubMed DOI PMC

Lindquist L., Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–1871. doi: 10.1016/S0140-6736(08)60800-4. PubMed DOI

Kovalev S.Y., Mukhacheva T.A. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017;55:159–165. doi: 10.1016/j.meegid.2017.09.014. PubMed DOI

Dai X., Shang G., Lu S., Yang J., Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg. Microb. Infect. 2018;7:74. doi: 10.1038/s41426-018-0081-6. PubMed DOI PMC

Růžek D., Dobler G., Donoso Mantke O. Tick-borne encephalitis: Pathogenesis and clinical implications. Travel. Med. Infect. Dis. 2010;8:223–232. doi: 10.1016/j.tmaid.2010.06.004. PubMed DOI

Mantke O.D., Escadafal C., Niedrig M., Pfeffer M. Tick-borne encephalitis in Europe, 2007 to 2009. Euro. Surveill. 2011;16:19976. PubMed

Süss J. Tick-borne encephalitis 2010: Epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis. 2011;2:2–15. doi: 10.1016/j.ttbdis.2010.10.007. PubMed DOI

Steffen R. Epidemiology of tick-borne encephalitis (TBE) in international travellers to Western/Central Europe and conclusions on vaccination recommendations. J. Travel Med. 2016;23:1–10. PubMed

Jääskeläinen A.E., Tonteri E., Sironen T., Pakarinen L., Vaheri A., Vapalahti O. European Subtype Tick-borne Encephalitis Virus in Ixodes persulcatus Ticks. Emerg. Infect. Dis. 2011;17:323–325. doi: 10.3201/eid1702.101487. PubMed DOI PMC

Mansfield K.L., Johnson N., Phipps L.P., Stephenson J.R., Fooks A.R., Solomon T. Tick-borne encephalitis virus-A review of an emerging zoonosis. J. Gen. Virol. 2009;90:1781–1794. doi: 10.1099/vir.0.011437-0. PubMed DOI

Ruzek D., Županc T.A., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI

Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017;24:1214-e61. doi: 10.1111/ene.13356. PubMed DOI

Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI

Yoshii K., Yanagihara N., Ishizuka M., Sakai M., Kariwa H. N-linked glycan in tick-borne encephalitis virus envelope protein affects viral secretion in mammalian cells, but not in tick cells. J. Gen. Virol. 2013;94:2249–2258. doi: 10.1099/vir.0.055269-0. PubMed DOI

Krol E., Wandzik I., Krejmer-Rabalska M., Szewczyk B. Biological Evaluation of Uridine Derivatives of 2-Deoxy Sugars as Potential Antiviral Compounds against Influenza A Virus. Int. J. Mol. Sci. 2017;18:1700. doi: 10.3390/ijms18081700. PubMed DOI PMC

Wandzik I., Bieg T., Czaplicka M. Synthesis of 2-deoxy-hexopyranosyl derivatives of uridine as donor substrate analogues for glycosyltransferases. Bioorgan. Chem. 2009;37:211–216. doi: 10.1016/j.bioorg.2009.08.001. PubMed DOI

Wandzik I., Bieg T., Kadela M. Simultaneous removal of benzyl and benzyloxycarbonyl protective groups in 5’-O-(2-deoxy-alpha-d-glucopyranosyl)uridine by catalytic transfer hydrogenolysis. Nucleosides Nucleotides Nucleic Acids. 2008;27:1250–1256. doi: 10.1080/15257770802458303. PubMed DOI

Paszkowska J., Kania B., Wandzik I. Evaluation of the Lipophilicty of Selected Uridine Derivatives by Use of Rp-Tlc, Shake-Flask, and Computational Methods. J. Liq. Chromatogr. Relat. Technol. 2012;35:1202–1212. doi: 10.1080/10826076.2011.619030. DOI

Krol E., Wandzik I., Szeja W., Grynkiewicz G., Szewczyk B. In vitro antiviral activity of some uridine derivatives of 2-deoxy sugars against classical swine fever virus. Antivir. Res. 2010;86:154–162. doi: 10.1016/j.antiviral.2010.02.314. PubMed DOI

Krol E., Wandzik I., Pastuch-Gawolek G., Szewczyk B. Anti-Hepatitis C Virus Activity of Uridine Derivatives of 2-Deoxy Sugars. Molecules. 2018;23:1547. doi: 10.3390/molecules23071547. PubMed DOI PMC

Krol E., Wandzik I., Gromadzka B., Nidzworski D., Rychlowska M., Matlacz M., Tyborowska J., Szewczyk B. Anti-influenza A virus activity of uridine derivatives of 2-deoxy sugars. Antivir. Res. 2013;100:90–97. doi: 10.1016/j.antiviral.2013.07.014. PubMed DOI

Heinz F.X., Allison S.L. Structures and mechanisms in flavivirus fusion. Adv. Virus Res. 2000;55:231–269. PubMed PMC

Lorenz I.C., Allison S.L., Heinz F.X., Helenius A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 2002;76:5480–5491. doi: 10.1128/JVI.76.11.5480-5491.2002. PubMed DOI PMC

Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23:3043–3052. doi: 10.1016/j.vaccine.2004.11.068. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

History of Arbovirus Research in the Czech Republic

. 2021 Nov 22 ; 13 (11) : . [epub] 20211122

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...