Discovery of Orally Available Prodrugs of Itaconate and Derivatives

. 2025 Feb 13 ; 68 (3) : 3433-3444. [epub] 20250123

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39848624

Grantová podpora
R01 AR068280 NIAMS NIH HHS - United States
R01 AR074846 NIAMS NIH HHS - United States

Itaconate, an endogenous immunomodulator from the tricarboxylic acid (TCA) cycle, shows therapeutic effects in various disease models, but is highly polar with poor cellular permeability. We previously reported a novel, topical itaconate derivative, SCD-153, for the treatment of alopecia areata. Here, we present the discovery of orally available itaconate derivatives for systemic and skin disorders. Four sets of prodrugs were synthesized using pivaloyloxymethyl (POM), isopropyloxycarbonyloxymethyl (POC), (5-methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL), and 3-(hexadecyloxy)propyl (HDP) pro-moieties pairing with itaconic acid (IA), 1-methyl itaconate (1-MI), and 4-methyl itaconate (4-MI). Among these, POC-based prodrugs (P2, P9, P13) showed favorable stability, permeability, and pharmacokinetics. Notably, P2 and P13 significantly inhibited Poly(I:C)/IFNγ-induced inflammatory cytokines in human epidermal keratinocytes. Oral studies demonstrated favorable pharmacokinetics releasing micromolar concentrations of IA or 4-MI from P2 and P13, respectively. These findings highlight the potential of prodrug strategies to enhance itaconate's cellular permeability and oral bioavailability, paving the way for clinical translation.

Zobrazit více v PubMed

O’Neill LAJ; Artyomov MN Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol 2019, 19 (5), 273–281. PubMed

Ferreira AV; Netea MG; Dominguez-Andres J. Itaconate as an immune modulator. Aging 2019, 11 (12), 3898–3899. PubMed PMC

Lampropoulou V; Sergushichev A; Bambouskova M; Nair S; Vincent EE; Loginicheva E; Cervantes-Barragan L; Ma X; Huang SC; Griss T; et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016, 24 (1), 158–166. PubMed PMC

Lawrence GW; Ovsepian SV; Wang J; Aoki KR; Dolly JO Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem. J 2012, 441 (1), 443−452. PubMed

Qin W; Qin K; Zhang Y; Jia W; Chen Y; Cheng B; Peng L; Chen N; Liu Y; Zhou W; et al. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate. Nat. Chem. Biol 2019, 15 (10), 983–991. PubMed

Song H; Xu T; Feng X; Lai Y; Yang Y; Zheng H; He X; Wei G; Liao W; Liao Y; et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine 2020, 57, No. 102832. PubMed PMC

Bambouskova M; Gorvel L; Lampropoulou V; Sergushichev A; Loginicheva E; Johnson K; Korenfeld D; Mathyer ME; Kim H; Huang LH; et al. Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis. Nature 2018, 556 (7702), 501–504. PubMed PMC

Swain A; Bambouskova M; Kim H; Andhey PS; Duncan D; Auclair K; Chubukov V; Simons DM; Roddy TP; Stewart KM; Artyomov MN Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nat. Metab 2020, 2 (7), 594–602. PubMed PMC

Hooftman A; Angiari S; Hester S; Corcoran SE; Runtsch MC; Ling C; Ruzek MC; Slivka PF; McGettrick AF; Banahan K; et al. The Immunomodulatory Metabolite Itaconate Modifies NLRP3 and Inhibits Inflammasome Activation. Cell Metab. 2020, 32 (3), 468–478.e7. PubMed PMC

Runtsch MC; Angiari S; Hooftman A; Wadhwa R; Zhang Y; Zheng Y; Spina JS; Ruzek MC; Argiriadi MA; McGettrick AF; et al. Itaconate and itaconate derivatives target JAK1 to suppress alternative activation of macrophages. Cell Metab. 2022, 34 (3), 487–501.e8. PubMed

Yang S; Zhang X; Zhang H; Lin X; Chen X; Zhang Y; Lin X; Huang L; Zhuge Q. Dimethyl itaconate inhibits LPS-induced microglia inflammation and inflammasome-mediated pyroptosis via inducing autophagy and regulating the Nrf-2/HO-1 signaling pathway. Mol. Med. Rep 2021, 24 (3), No. 672, DOI: 10.3892/mmr.2021.12311. PubMed DOI PMC

Li W; Li Y; Kang J; Jiang H; Gong W; Chen L; Wu C; Liu M; Wu X; Zhao Y; Ren J. 4-octyl itaconate as a metabolite derivative inhibits inflammation via alkylation of STING. Cell Rep. 2023, 42 (3), No. 112145. PubMed

ElAzzouny M; Tom CT; Evans CR; Olson LL; Tanga MJ; Gallagher KA; Martin BR; Burant CF Dimethyl Itaconate Is Not Metabolized into Itaconate Intracellularly. J. Biol. Chem 2017, 292 (12), 4766–4769. PubMed PMC

Hooftman A; O’Neill LAJ The Immunomodulatory Potential of the Metabolite Itaconate. Trends Immunol. 2019, 40 (8), 687–698. PubMed

Lin J; Ren J; Gao DS; Dai Y; Yu L. The Emerging Application of Itaconate: Promising Molecular Targets and Therapeutic Opportunities. Front. Chem 2021, 9, No. 669308. PubMed PMC

Tsai J; Gori S; Alt J; Tiwari S; Iyer J; Talwar R; Hinsu D; Ahirwar K; Mohanty S; Khunt C; et al. Topical SCD-153, a 4-methyl itaconate prodrug, for the treatment of alopecia areata. PNAS Nexus 2023, 2 (1), No. pgac297. PubMed PMC

Hecker SJ; Erion MD Prodrugs of phosphates and phosphonates. J. Med. Chem 2008, 51 (8), 2328–2345. PubMed

Babu KS; Reddy MS; Tagore AR; Reddy GS; Sebastian S; Varma MS; Venkateswarlu G; Bhattacharya A; Reddy PP; Anand RV Efficient synthesis of olmesartan medoxomil, an antihypertensive drug. Synth. Commun 2008, 39 (2), 291–298.

Garaga S; Misra NC; Reddy AVR; Prabahar KJ; Takshinamoorthy C; Sanasi PD; Babu KR Commercial synthesis of Azilsartan Kamedoxomil: An angiotensin II receptor blocker. Org. Process Res. Dev 2015, 19 (4), 514–519.

Hostetler KY Alkoxyalkyl prodrugs of acyclic nucleoside phosphonates enhance oral antiviral activity and reduce toxicity: current state of the art. Antiviral Res. 2009, 82 (2), A84–98. PubMed PMC

Pradere U; Garnier-Amblard EC; Coats SJ; Amblard F; Schinazi RF Synthesis of nucleoside phosphate and phosphonate prodrugs. Chem. Rev 2014, 114 (18), 9154–9218. PubMed PMC

Dash RP; Tichy T; Veeravalli V; Lam J; Alt J; Wu Y; Tenora L; Majer P; Slusher BS; Rais R. Enhanced Oral Bioavailability of 2-(Phosphonomethyl)-pentanedioic Acid (2-PMPA) from its (5-Methyl-2-oxo-1,3-dioxol-4-yl)methyl (ODOL)-Based Prodrugs. Mol. Pharmaceutics 2019, 16 (10), 4292–4301. PubMed PMC

Majer P; Jancarik A; Krecmerova M; Tichy T; Tenora L; Wozniak K; Wu Y; Pommier E; Ferraris D; Rais R; Slusher BS Discovery of Orally Available Prodrugs of the Glutamate Carboxypeptidase II (GCPII) Inhibitor 2-Phosphonomethylpentanedioic Acid (2-PMPA). J. Med. Chem 2016, 59 (6), 2810–2819. PubMed

Chollet AM; Le Diguarher T; Kucharczyk N; Loynel A; Bertrand M; Tucker G; Guilbaud N; Burbridge M; Pastoureau P; Fradin A; et al. Solid-phase synthesis of alpha-substituted 3-bisarylthio N-hydroxy propionamides as specific MMP inhibitors. Bioorg. Med. Chem 2002, 10 (3), 531–544. PubMed

Faller B. Artificial membrane assays to assess permeability. Curr. Drug Metab 2008, 9 (9), 886–892. PubMed

Daina A; Michielin O; Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep 2017, 7, No. 42717. PubMed PMC

Wils P; Warnery A; Phung-Ba V; Legrain S; Scherman D. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharmacol. Exp. Ther 1994, 269 (2), 654–658. PubMed

Kawaguchi N; Ebihara T; Takeuchi T; Morohashi A; Yamasaki H; Tagawa Y; Takahashi J; Kondo T; Asahi S. Absorption of TAK-491, a new angiotensin II receptor antagonist, in animals. Xenobiotica 2013, 43 (2), 182–192. PubMed

Schurek KN; Wiebe R; Karlowsky JA; Rubinstein E; Hoban DJ; Zhanel GG Faropenem: review of a new oral penem. Expert Rev. Anti-Infect. Ther 2007, 5 (2), 185–198. PubMed

Tsaioun K; Blaauboer BJ; Hartung T. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. ALTEX 2016, 33 (4), 343–358. PubMed

Heidel KM; Dowd CS Phosphonate prodrugs: an overview and recent advances. Future Med. Chem 2019, 11 (13), 1625–1643. PubMed PMC

Shin JM; Choi DK; Sohn KC; Kim SY; Min Ha J; Ho Lee Y; Im M; Seo YJ; Deok Kim C; Lee JH; et al. Double-stranded RNA induces inflammation via the NF-kappaB pathway and inflammasome activation in the outer root sheath cells of hair follicles. Sci. Rep 2017, 7, No. 44127. PubMed PMC

Shin JM; Choi DK; Sohn KC; Koh JW; Lee YH; Seo YJ; Kim CD; Lee JH; Lee Y. Induction of alopecia areata in C3H/HeJ mice using polyinosinic-polycytidylic acid (poly[I:C]) and interferon-gamma. Sci. Rep 2018, 8 (1), No. 12518. PubMed PMC

Xing L; Dai Z; Jabbari A; Cerise JE; Higgins CA; Gong W; de Jong A; Harel S; DeStefano GM; Rothman L; et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med 2014, 20 (9), 1043–1049. PubMed PMC

Pratt CH; King LE Jr.; Messenger AG; Christiano AM; Sundberg JP Alopecia areata. Nat. Rev. Dis Primers 2017, 3, No. 17011. PubMed PMC

Glickman JW; Dubin C; Renert-Yuval Y; Dahabreh D; Kimmel GW; Auyeung K; Estrada YD; Singer G; Krueger JG; Pavel AB; Guttman-Yassky E. Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation. J. Am. Acad. Dermatol 2021, 84 (2), 370–380. PubMed

McPhee CG; Duncan FJ; Silva KA; King LE Jr.; Hogenesch H; Roopenian DC; Everts HB; Sundberg JP Increased expression of Cxcr3 and its ligands, Cxcl9 and Cxcl10, during the development of alopecia areata in the mouse. J. Invest. Dermatol 2012, 132 (6), 1736–1738. PubMed PMC

Hoffmann R. The potential role of cytokines and T cells in alopecia areata. J. Invest. Dermatol. Symp. Proc 1999, 4 (3), 235–238. PubMed

Hoffmann R; Eicheler W; Wenzel E; Happle R. Interleukin-1beta-induced inhibition of hair growth in vitro is mediated by cyclic AMP. J. Invest. Dermatol 1997, 108 (1), 40–42. PubMed

Hoffmann R; Eicheler W; Huth A; Wenzel E; Happle R. Cytokines and growth factors influence hair growth in vitro. Possible implications for the pathogenesis and treatment of alopecia areata. Arch. Dermatol. Res 1996, 288 (3), 153–156. PubMed

Hoffmann R; Wenzel E; Huth A; van der Steen P; Schaufele M; Henninger HP; Happle R. Cytokine mRNA levels in Alopecia areata before and after treatment with the contact allergen diphenylcyclopropenone. J. Invest. Dermatol 1994, 103 (4), 530–533. PubMed

Fetter T; de Graaf DM; Claus I; Wenzel J. Aberrant inflammasome activation as a driving force of human autoimmune skin disease. Front. Immunol 2023, 14, No. 1190388. PubMed PMC

Chen LL; Morcelle C; Cheng ZL; Chen X; Xu Y; Gao Y; Song J; Li Z; Smith MD; Shi M; et al. Itaconate inhibits TET DNA dioxygenases to dampen inflammatory responses. Nat. Cell Biol 2022, 24 (3), 353–363. PubMed PMC

Xie QM; Chen N; Song SM; Zhao CC; Ruan Y; Sha JF; Liu Q; Jiang XQ; Fei GH; Wu HM Itaconate Suppresses the Activation of Mitochondrial NLRP3 Inflammasome and Oxidative Stress in Allergic Airway Inflammation. Antioxidants 2023, 12 (2), No. 489. PubMed PMC

Aso K; Kono M; Kanda M; Kudo Y; Sakiyama K; Hisada R; Karino K; Ueda Y; Nakazawa D; Fujieda Y; et al. Itaconate ameliorates autoimmunity by modulating T cell imbalance via metabolic and epigenetic reprogramming. Nat. Commun 2023, 14 (1), No. 984. PubMed PMC

Mills EL; Ryan DG; Prag HA; Dikovskaya D; Menon D; Zaslona Z; Jedrychowski MP; Costa ASH; Higgins M; Hams E; et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 2018, 556 (7699), 113–117. PubMed PMC

McGettrick AF; Bourner LA; Dorsey FC; O’Neill LAJ Metabolic Messengers: itaconate. Nat. Metab 2024, 6 (9), 1661–1667. PubMed

Hoisnard L; Lebrun-Vignes B; Maury S; Mahevas M; El Karoui K; Roy L; Zarour A; Michel M; Cohen JL; Amiot A; et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci. Rep 2022, 12 (1), No. 7140. PubMed PMC

Mori S; Ogata F; Tsunoda R. Risk of venous thromboembolism associated with Janus kinase inhibitors for rheumatoid arthritis: case presentation and literature review. Clin. Rheumatol 2021, 40 (11), 4457–4471. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...