Interpreting the role of epigallocatechin-3-gallate in Epstein-Barr virus infection-mediated neuronal diseases

. 2025 Jan 23 ; () : . [epub] 20250123

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39849283

Grantová podpora
SPARC/2019-2020/P2018/SL Scheme for Promotion of Academic and Research Collaboration

Odkazy

PubMed 39849283
DOI 10.1007/s12223-025-01240-0
PII: 10.1007/s12223-025-01240-0
Knihovny.cz E-zdroje

The increasing prevalence of neurodegenerative diseases is a formidable task due to their multifactorial causation and treatments limited to disease maintenance and progression. Epstein-Barr virus (EBV) is reported to be involved with neuropathologies; previous studies from our group suggested the effective binding of epigallocatechin-3-gallate (EGCG) with EBV nuclear antigen 1 (EBNA1) and glycoprotein H (gH). Therefore, in the current study, we evaluated the anti-EBV effect of ECGG on the neuronal cells. EBV-GFP exhibited a decline after EGCG treatment. We have observed a decrease in specific latent and lytic cycle genes. EBNA1 unravelled attenuation at day 1 (D1), whereas EBNA3B, EBNA3C, BMRF1, BZLF1, and gp350 showed major downregulation in D3 compared to EBV infection. Notably, EBNA-LP has shown mitigation in both the considered time points. Inflammatory and chemokine moieties like IL-6, CCR1, CCR3, and CCR5 declined upon EGCG treatment, while IL-10 exhibited elevation. Transcription factor STAT3 and NF-kB were decreased, especially in the pre-EGCG treated samples. Subsequently, restoration in the mitochondrial membrane potential was observed after EGCG treatment. We observed an increase in the mitochondrial fission genes like DRP1 and MiD49, and not many regulations were observed in the mitochondrial fusion genes except MFN2. Furthermore, the CytC, CytC oxidase, MAVS, ANT, and SDH exhibited elevation upon EGCG treatment, while ATPsyn and ABAD showed downregulation. Dysfunction of mitochondria is further related to apoptosis of neurons. Herein, we were keen to examine the level of amyloid-precursor protein (APP), and it has also indicated declined after EGCG treatment. Altogether, the current study demonstrated the anti-EBV effect of EGCG by subsiding the EBV-mediated inflammation and amendments in the neuropathological markers.

Zobrazit více v PubMed

Ahmed S, Marotte H, Kwan K et al (2008) Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proc Natl Acad Sci 105:14692–14697. https://doi.org/10.1073/pnas.0802675105 PubMed DOI PMC

Carpier J-M, Lucas CL (2018) Epstein-Barr virus susceptibility in activated PI3Kδ syndrome (APDS) immunodeficiency. Front Immunol 8:2005. https://doi.org/10.3389/fimmu.2017.02005 PubMed DOI PMC

Castellano-González G, Pichaud N, Ballard JWO et al (2016) Epigallocatechin-3-gallate induces oxidative phosphorylation by activating cytochrome c oxidase in human cultured neurons and astrocytes. Oncotarget 7:7426–7440. https://doi.org/10.18632/oncotarget.6863 PubMed DOI PMC

Chang L-K, Wei T-T, Chiu Y-F et al (2003) Inhibition of Epstein-Barr virus lytic cycle by (−)-epigallocatechin gallate. Biochem and Biophys Res Commun 301:1062–1068. https://doi.org/10.1016/S0006-291X(03)00067-6 DOI

Chen Y-L, Tsai H-L, Peng C-W (2012) EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1. Biochem and Biophys Res Commun 417:1093–1099. https://doi.org/10.1016/j.bbrc.2011.12.104 DOI

Chen B, Zhang W, Lin C, Zhang L (2022) A comprehensive review on beneficial effects of catechins on secondary mitochondrial diseases. Int J Mol Sci 23:11569. https://doi.org/10.3390/ijms231911569 PubMed DOI PMC

Chung SS, Vadgama JV (2015) Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res 35:39–46 PubMed PMC

Dai W, Ruan C, Zhang Y et al (2020) Bioavailability enhancement of EGCG by structural modification and nano-delivery: a review. J of Funct Foods 65:103732. https://doi.org/10.1016/j.jff.2019.103732 DOI

Dávila-Collado R, Jarquín-Durán O, Dong LT, Espinoza JL (2020) Epstein-Barr virus and Helicobacter pylori co-infection in non-malignant gastroduodenal disorders. Pathog 9:104. https://doi.org/10.3390/pathogens9020104 DOI

Debuysschere C, Nekoua MP, Hober D (2023) Markers of Epstein-Barr virus infection in patients with multiple sclerosis. Microorganisms 11:1262. https://doi.org/10.3390/microorganisms11051262 PubMed DOI PMC

Dragicevic N, Smith A, Lin X et al (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimers Dis 26:507–521. https://doi.org/10.3233/JAD-2011-101629 PubMed DOI

Fukui H, Diaz F, Garcia S, Moraes CT (2007) Cytochrome c oxidase deficiency in neurons decreases both oxidative stress and amyloid formation in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 104:14163–14168. https://doi.org/10.1073/pnas.0705738104 PubMed DOI PMC

Graner M, Pointon T, Manton S et al (2020) Oligoclonal IgG antibodies in multiple sclerosis target patient-specific peptides. PLoS ONE 15:e0228883. https://doi.org/10.1371/journal.pone.0228883 PubMed DOI PMC

Hammerschmidt W, Sugden B (2013) Replication of Epstein-Barr viral DNA. Cold Spring Harb Perspect Biol 5:a013029. https://doi.org/10.1101/cshperspect.a013029 PubMed DOI PMC

Isaacs CE, Wen GY, Xu W et al (2008) Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob Agents Chemother 52:962–970. https://doi.org/10.1128/AAC.00825-07 PubMed DOI PMC

Islam MS, Akhtar MM, Ciavattini A et al (2014) Use of dietary phytochemicals to target inflammation, fibrosis, proliferation, and angiogenesis in uterine tissues: promising options for prevention and treatment of uterine fibroids? Mol Nutr Food Res 58:1667–1684. https://doi.org/10.1002/mnfr.201400134 PubMed DOI PMC

Jakhmola S, Jonniya NA, Sk MF et al (2021) Identification of potential inhibitors against Epstein-Barr Virus Nuclear Antigen 1 (EBNA1): an insight from docking and molecular dynamic simulations. ACS Chem Neurosci 12:3060–3072. https://doi.org/10.1021/acschemneuro.1c00350 PubMed DOI

Jakhmola S, Hazarika Z, Jha AN, Jha HC (2022) In silico analysis of antiviral phytochemicals efficacy against Epstein-Barr virus glycoprotein H. J of Biomol Struct and Dyn 40:5372–5385. https://doi.org/10.1080/07391102.2020.1871074 DOI

Jha HC, Mehta D, Lu J et al (2015) Gammaherpesvirus infection of human neuronal cells. mBio 6:e01844-15. https://doi.org/10.1128/mBio.01844-15 PubMed DOI PMC

Kakalacheva K, Münz C, Lünemann JD (2011) Viral triggers of multiple sclerosis. Biochim Biophys Acta 1812:132–140. https://doi.org/10.1016/j.bbadis.2010.06.012 PubMed DOI

Lakshmi SP, Reddy AT, Kodidhela LD, Varadacharyulu NCh (2020) The tea catechin epigallocatechin gallate inhibits NF-κB-mediated transcriptional activation by covalent modification. Arch of Biochem and Biophys 695:108620. https://doi.org/10.1016/j.abb.2020.108620 DOI

Lee JW, Lee YK, Ban JO et al (2009) Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-κB pathways in mice. J Nutr 139:1987–1993. https://doi.org/10.3945/jn.109.109785 PubMed DOI

Li H, Li Y, Hu J et al (2021) ()-Epigallocatechin-3-gallate inhibits EBV lytic replication via targeting LMP1-mediated MAPK signal axes. Oncol Res 28:763–778. https://doi.org/10.3727/096504021X16135618512563 PubMed DOI PMC

Liu S, Li H, Chen L et al (2013) (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells. J Carcinog 34:627–637. https://doi.org/10.1093/carcin/bgs364 DOI

Liu S, Li H, Tang M, Cao Y (2017) (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1. Exp Ther Med 15:1105–12. https://doi.org/10.3892/etm.2017.5495 PubMed DOI PMC

Lünemann JD, Tintoré M, Messmer B et al (2010) Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann of Neurol 67:159–169. https://doi.org/10.1002/ana.21886 DOI

Meyding-Lamadé U, Strank C (2012) Herpesvirus infections of the central nervous system in immunocompromised patients. Ther Adv Neurol Disord 5:279–296. https://doi.org/10.1177/1756285612456234 PubMed DOI PMC

Mosher KI, Wyss-Coray T (2014) Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem Pharmacol 88:594–604. https://doi.org/10.1016/j.bcp.2014.01.008 PubMed DOI PMC

NovaliA Z, Van Rossen TM (2016) Agents and approaches for lytic induction therapy of Epstein-Barr virus associated malignancies. J Med chem 6:449. https://doi.org/10.4172/2161-0444.1000384 DOI

Patra P, Rani A, Sharma N et al (2023) Unraveling the connection of Epstein-Barr Virus and its glycoprotein M PubMed DOI

Payne A, Nahashon S, Taka E et al (2022) Epigallocatechin-3-gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules 12:371. https://doi.org/10.3390/biom12030371 PubMed DOI PMC

Prasanth M, Sivamaruthi B, Chaiyasut C, Tencomnao T (2019) A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 11:474. https://doi.org/10.3390/nu11020474 PubMed DOI PMC

Qin S, Chen M-H, Fang W et al (2019) Cerebral protection of epigallocatechin gallate (EGCG) via preservation of mitochondrial function and ERK inhibition in a rat resuscitation model. DDDT 13:2759–2768. https://doi.org/10.2147/DDDT.S215358 PubMed DOI PMC

Rani A, Jha HC (2024) Dissecting the Epstein-Barr virus entry pathway into astrocytes: unfolding the involvement of endosomal trafficking. Future Virol 19:381–391. https://doi.org/10.1080/17460794.2024.2407729 DOI

Rani A, Saini V, Patra P et al (2023a) Epigallocatechin gallate: a multifaceted molecule for neurological disorders and neurotropic viral infections. ACS Chem Neurosci 14:2968–2980. https://doi.org/10.1021/acschemneuro.3c00368 PubMed DOI

Rani A, Tanwar M, Verma TP et al (2023b) Understanding the role of membrane cholesterol upon Epstein Barr virus infection in astroglial cells. Front Immunol 14:1192032. https://doi.org/10.3389/fimmu.2023.1192032 PubMed DOI PMC

Rani A, Ergün S, Karnati S, Jha HC (2024) Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 30:22–38. https://doi.org/10.1007/s13365-023-01190-8 PubMed DOI

Rezai-Zadeh K, Shytle D, Sun N et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814. https://doi.org/10.1523/JNEUROSCI.1521-05.2005 PubMed DOI PMC

Sundström P, Nyström M, Ruuth K, Lundgren E (2009) Antibodies to specific EBNA-1 domains and HLA DRB1*1501 interact as risk factors for multiple sclerosis. J Neuroimmunol 215:102–107. https://doi.org/10.1016/j.jneuroim.2009.08.004 PubMed DOI

Szekanecz Z, Koch AE, Tak PP (2011) Chemokine and chemokine receptor blockade in arthritis, a prototype of immune-mediated inflammatory diseases. Neth J Med 69:356–366 PubMed

Tsang CM, Deng W, Yip YL et al (2014) Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells. Chin J Cancer 33:549–555. https://doi.org/10.5732/cjc.014.10169 PubMed DOI PMC

Tyler KL (2022) The enigmatic links between Epstein-Barr virus infection and multiple sclerosis. J Clin Invest 132:e160468. https://doi.org/10.1172/JCI160468 PubMed DOI PMC

Wang Y, Li J, Wang X et al (2016) (−)-Epigallocatechin-3-gallate enhances hepatitis C virus double-stranded RNA intermediates-triggered innate immune responses in hepatocytes. Sci Rep 6:21595. https://doi.org/10.1038/srep21595 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...