Exploring Multi-Pathology Brain Segmentation: From Volume-Based to Component-Based Deep Learning Analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39852319
PubMed Central
PMC11766070
DOI
10.3390/jimaging11010006
PII: jimaging11010006
Knihovny.cz E-resources
- Keywords
- AI algorithms, deep learning, magnetic resonance imaging (MRI), multiple sclerosis (MS), segmentation, strokes, tumors, white matter hyperintensities (WMH),
- Publication type
- Journal Article MeSH
Detection and segmentation of brain abnormalities using Magnetic Resonance Imaging (MRI) is an important task that, nowadays, the role of AI algorithms as supporting tools is well established both at the research and clinical-production level. While the performance of the state-of-the-art models is increasing, reaching radiologists and other experts' accuracy levels in many cases, there is still a lot of research needed on the direction of in-depth and transparent evaluation of the correct results and failures, especially in relation to important aspects of the radiological practice: abnormality position, intensity level, and volume. In this work, we focus on the analysis of the segmentation results of a pre-trained U-net model trained and validated on brain MRI examinations containing four different pathologies: Tumors, Strokes, Multiple Sclerosis (MS), and White Matter Hyperintensities (WMH). We present the segmentation results for both the whole abnormal volume and for each abnormal component inside the examinations of the validation set. In the first case, a dice score coefficient (DSC), sensitivity, and precision of 0.76, 0.78, and 0.82, respectively, were found, while in the second case the model detected and segmented correct (True positives) the 48.8% (DSC ≥ 0.5) of abnormal components, partially correct the 27.1% (0.05 > DSC > 0.5), and missed (False Negatives) the 24.1%, while it produced 25.1% False Positives. Finally, we present an extended analysis between the True positives, False Negatives, and False positives versus their position inside the brain, their intensity at three MRI modalities (FLAIR, T2, and T1ce) and their volume.
See more in PubMed
Giovannoni G., Butzkueven H., Dhib-Jalbut S., Hobart J., Kobelt G., Pepper G., Sormani M.P., Thalheim C., Traboulsee A., Vollmer T. Brain health: Time matters in multiple sclerosis. Mult. Scler. Relat. Disord. 2016;9((Suppl. S1)):S5–S48. doi: 10.1016/j.msard.2016.07.003. PubMed DOI
DeAngelis L.M. Brain tumors. N. Engl. J. Med. 2001;344:114–123. doi: 10.1056/NEJM200101113440207. PubMed DOI
Vermeer S.E., Longstreth W.T., Jr., Koudstaal P.J. Silent brain infarcts: A systematic review. Lancet Neurol. 2007;6:611–619. doi: 10.1016/S1474-4422(07)70170-9. PubMed DOI
Gouw A.A., Seewann A., van der Flier W.M., Barkhof F., Rozemuller A.M., Scheltens P., Geurts J.J. Heterogeneity of small vessel disease: A systematic review of MRI and histopathology correlations. J. Neurol. Neurosurg. Psychiatry. 2011;82:126–135. doi: 10.1136/jnnp.2009.204685. PubMed DOI
Filippi M., Bruck W., Chard D., Fazekas F., Geurts J.J.G., Enzinger C., Hametner S., Kuhlmann T., Preziosa P., Rovira A., et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18:198–210. doi: 10.1016/S1474-4422(18)30451-4. PubMed DOI
Yamanakkanavar N., Choi J.Y., Lee B. MRI Segmentation and Classification of Human Brain Using Deep Learning for Diagnosis of Alzheimer’s Disease: A Survey. Sensors. 2020;20:3243. doi: 10.3390/s20113243. PubMed DOI PMC
Dlamini Z., Francies F.Z., Hull R., Marima R. Artificial intelligence (AI) and big data in cancer and precision oncology. Comput. Struct. Biotechnol. J. 2020;18:2300–2311. doi: 10.1016/j.csbj.2020.08.019. PubMed DOI PMC
Norori N., Hu Q., Aellen F.M., Faraci F.D., Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns. 2021;2:100347. doi: 10.1016/j.patter.2021.100347. PubMed DOI PMC
Shoeibi A., Khodatars M., Jafari M., Ghassemi N., Moridian P., Alizadehsani R., Ling S.H., Khosravi A., Alinejad-Rokny H., Lam H.K., et al. Diagnosis of brain diseases in fusion of neuroimaging modalities using deep learning: A review. Inf. Fusion. 2023;93:85–117. doi: 10.1016/j.inffus.2022.12.010. DOI
Yaqub M., Feng J., Zia M.S., Arshid K., Jia K., Rehman Z.U., Mehmood A. State-of-the-art CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci. 2020;10:427. doi: 10.3390/brainsci10070427. PubMed DOI PMC
Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation; Proceedings of the Medical Image Computing and Computer—Assisted Intervention—MICCAI 2015: 18th International Conference; Munich, Germany. 5–9 October 2015; pp. 234–241. Proceedings, Part III 18.
Cinar N., Ozcan A., Kaya M. A hybrid DenseNet121-UNet model for brain tumor segmentation from MR Images. Biomed. Signal Process. Control. 2022;76:103647. doi: 10.1016/j.bspc.2022.103647. DOI
Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang Z., Karpathy A., Khosla A., Bernstein M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015;115:211–252. doi: 10.1007/s11263-015-0816-y. DOI
Yousaf F., Iqbal S., Fatima N., Kousar T., Shafry Mohd Rahim M. Multi-class disease detection using deep learning and human brain medical imaging. Biomed. Signal Process. Control. 2023;85:104875. doi: 10.1016/j.bspc.2023.104875. DOI
Zhang Y., Zhong P., Jie D., Wu J., Zeng S., Chu J., Liu Y., Wu E.X., Tang X. Brain Tumor Segmentation From Multi-Modal MR Images via Ensembling UNets. Front. Radiol. 2021;1:704888. doi: 10.3389/fradi.2021.704888. PubMed DOI PMC
Allah A.M.G., Sarhan A.M., Elshennawy N.M. Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information. Expert Syst. Appl. 2023;213:118833. doi: 10.1016/j.eswa.2022.118833. DOI
Ferreira A., Solak N., Li J., Dammann P., Kleesiek J., Alves V., Egger J. How we won BraTS 2023 Adult Glioma challenge? Just faking it! Enhanced Synthetic Data Augmentation and Model Ensemble for brain tumour segmentation. arXiv. 20242402.17317
Huang L., Zhao Z., An L., Gong Y., Wang Y., Yang Q., Wang Z., Hu G., Wang Y., Guo C. 2.5 D transfer deep learning model for segmentation of contrast-enhancing lesions on brain magnetic resonance imaging of multiple sclerosis and neuromyelitis optica spectrum disorder. Quant. Imaging Med. Surg. 2024;14:273. doi: 10.21037/qims-23-846. PubMed DOI PMC
Ashtari P., Barile B., Van Huffel S., Sappey-Marinier D. New multiple sclerosis lesion segmentation and detection using pre-activation U-Net. Front. Neurosci. 2022;16:975862. doi: 10.3389/fnins.2022.975862. PubMed DOI PMC
Xue Y., Farhat F.G., Boukrina O., Barrett A.M., Binder J.R., Roshan U.W., Graves W.W. A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. NeuroImage Clin. 2020;25:102118. doi: 10.1016/j.nicl.2019.102118. PubMed DOI PMC
Wu J., Zhang Y., Wang K., Tang X. Skip connection U-Net for white matter hyperintensities segmentation from MRI. IEEE Access. 2019;7:155194–155202. doi: 10.1109/ACCESS.2019.2948476. DOI
Guerrero R., Qin C., Oktay O., Bowles C., Chen L., Joules R., Wolz R., Valdés-Hernández M.d.C., Dickie D.A., Wardlaw J. White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. 2018;17:918–934. doi: 10.1016/j.nicl.2017.12.022. PubMed DOI PMC
Yushkevich P.A., Piven J., Hazlett H.C., Smith R.G., Ho S., Gee J.C., Gerig G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–1128. doi: 10.1016/j.neuroimage.2006.01.015. PubMed DOI
Shorten C., Khoshgoftaar T.M. A survey on image data augmentation for deep learning. J. Big Data. 2019;6:60. doi: 10.1186/s40537-019-0197-0. PubMed DOI PMC
Khalil K., Eldash O., Kumar A., Bayoumi M. Designing novel AAD pooling in hardware for a convolutional neural network accelerator. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2022;30:303–314. doi: 10.1109/TVLSI.2021.3139904. DOI
Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. Rethinking the inception architecture for computer vision; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA. 27–30 June 2016; pp. 2818–2826.
[(accessed on 25 March 2024)]. Available online: https://keras.io/api/applications.
Isensee F., Jäger P.F., Full P.M., Vollmuth P., Maier-Hein K.H. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, Proceedings of the 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, 4 October 2020. Springer; Berlin/Heidelberg, Germany: 2021. nnU-Net for brain tumor segmentation; pp. 118–132. Revised Selected Papers, Part II 6.
Maani F., Hashmi A.U.R., Aljuboory M., Saeed N., Sobirov I., Yaqub M. Advanced Tumor Segmentation in Medical Imaging: An Ensemble Approach for BraTS 2023 Adult Glioma and Pediatric Tumor Tasks. arXiv. 20242403.09262
Kuş Z., Aydin M. MedSegBench: A comprehensive benchmark for medical image segmentation in diverse data modalities. Sci. Data. 2024;11:1283. doi: 10.1038/s41597-024-04159-2. PubMed DOI PMC
[(accessed on 30 March 2024)]. Available online: https://www.med.upenn.edu/cbica/brats/
[(accessed on 15 April 2024)]. Available online: https://competitions.codalab.org/competitions/17094.
[(accessed on 20 April 2024)]. Available online: https://pandas.pydata.org/
[(accessed on 20 April 2024)]. Available online: https://matplotlib.org/
LaBella D., Baid U., Khanna O., McBurney-Lin S., McLean R., Nedelec P., Rashid A., Tahon N.H., Altes T., Bhalerao R. Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge. arXiv. 20242405.09787
Yousef R., Khan S., Gupta G., Siddiqui T., Albahlal B.M., Alajlan S.A., Haq M.A. U-Net-based models towards optimal MR brain image segmentation. Diagnostics. 2023;13:1624. doi: 10.3390/diagnostics13091624. PubMed DOI PMC
Jyothi P., Singh A.R. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: A review. Artif. Intell. Rev. 2023;56:2923–2969. doi: 10.1007/s10462-022-10245-x. DOI
Sperber C., Gallucci L., Mirman D., Arnold M., Umarova R.M. Stroke lesion size–Still a useful biomarker for stroke severity and outcome in times of high-dimensional models. NeuroImage Clin. 2023;40:103511. doi: 10.1016/j.nicl.2023.103511. PubMed DOI PMC
Amin J., Sharif M., Haldorai A., Yasmin M., Nayak R.S. Brain tumor detection and classification using machine learning: A comprehensive survey. Complex Intell. Syst. 2021;8:3161–3183. doi: 10.1007/s40747-021-00563-y. DOI
Ko K.H., Jung H.K., Park A.Y., Koh J.E., Jang H., Kim Y. Accuracy of tumor size measurement on shear wave elastography (SWE): Correlation with histopathologic factors of invasive breast cancer. Medicine. 2020;99:e23023. doi: 10.1097/MD.0000000000023023. PubMed DOI PMC
Tandel G.S., Biswas M., Kakde O.G., Tiwari A., Suri H.S., Turk M., Laird J.R., Asare C.K., Ankrah A.A., Khanna N.N., et al. A Review on a Deep Learning Perspective in Brain Cancer Classification. Cancers. 2019;11:111. doi: 10.3390/cancers11010111. PubMed DOI PMC
Artusi C.A., Geroin C., Imbalzano G., Camozzi S., Aldegheri S., Lopiano L., Tinazzi M., Bombieri N. Assessment of Axial Postural Abnormalities in Parkinsonism: Automatic Picture Analysis Software. Mov. Disord. Clin. Pract. 2023;10:636–645. doi: 10.1002/mdc3.13692. PubMed DOI PMC
Shah M., Xiao Y., Subbanna N., Francis S., Arnold D.L., Collins D.L., Arbel T. Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Med. Image Anal. 2011;15:267–282. doi: 10.1016/j.media.2010.12.003. PubMed DOI