Cytotoxic Stilbenoids, Hetero- and Homodimers of Homoisoflavonoids from Prospero autumnale
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39855634
PubMed Central
PMC11877502
DOI
10.1021/acs.jnatprod.4c01263
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects MeSH
- Antineoplastic Agents, Phytogenic * pharmacology chemistry MeSH
- Isoflavones pharmacology chemistry isolation & purification MeSH
- Plant Roots chemistry MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Line, Tumor MeSH
- Drug Screening Assays, Antitumor MeSH
- Stilbenes * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antineoplastic Agents, Phytogenic * MeSH
- Isoflavones MeSH
- Stilbenes * MeSH
An activity-guided isolation study on the EtOH extract prepared from the bulbs of Prospero autumnale yielded four new phenolic compounds, including a new stilbenoid (1), a new homoisoflavonoid derivative (8), a new homoisoflavonoid dimer (9), and an unprecedented homoisoflavone-stilbene heterodimer (10), together with six known (2-7) analogs. Their chemical structures were elucidated by spectroscopic analysis and theoretical NMR and ECD calculations. Compounds 9 and 10 are unique in their scaffolds. The in vitro cytotoxic activity of purified compounds was evaluated against eight tumor cell lines (HCT116, LoVo, DU145, PC3, HEP3B, HEPG2, MCF7, and MDA-MB-231) and one nontumor cell line (L929) by the MTS assay. Compounds 1, 2, 4, and 10 exhibited inhibition with IC50 values ranging from 8.2 to 37.6 μM. Cytotoxic cell death mechanisms were further investigated, indicating variability in apoptosis, necrosis, or cell cycle arrest.
Department of Chemistry University of California Davis California 95616 United States
Department of Immunology Faculty of Medicine Yeditepe University TR 34755 Kayışdağı İstanbul Türkiye
See more in PubMed
POWO . Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org (accessed June 13, 2024).
WFO . World Flora Online. https://www.worldfloraonline.org (accessed June 13, 2024).
Mammadov R.; Kaska A.; Ozay C. Phenolic Composition, Antioxidant and Cytotoxic Activities of Prospero autumnale. Indian J. Pharm. Sci. 2017, 79, 585–590. 10.4172/pharmaceutical-sciences.1000266. DOI
El-Elimat T.; Al-Qiam R.; Burdette J. E.; Al Sharie A. H.; Al-Gharaibeh M.; Oberlies N. H. Homoisoflavonoids from the Bulbs of Bellevalia longipes and an Assessment of Their Potential Cytotoxic Activity. Phytochemistry 2022, 203, 11334310.1016/j.phytochem.2022.113343. PubMed DOI PMC
Thu Z. M.; Myo K. K.; Aung H. T.; Armijos C.; Vidari G. Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities. Molecules 2020, 25, 2608.10.3390/molecules25112608. PubMed DOI PMC
Lin L. G.; Liu Q. Y.; Ye Y. Naturally Occurring Homoisoflavonoids and Their Pharmacological Activities. Planta Med. 2014, 80, 1053–1066. 10.1055/s-0034-1383026. PubMed DOI
Famuyiwa S. O.; Patil R. B.; Faloye K. O.; Awotuya I. O.; Gadhawe S. P.; Oladiran O. J.; Bello O. I. Sappanin-type Homoisoflavonoids from Scilla nervosa Inhibits Acetylcholinesterase Enzyme: A Combined in silico and in vitro Approach. J. Biomol. Struct. Dyn. 2023, 41, 10957–10968. 10.1080/07391102.2023.2190825. PubMed DOI
Socala K.; Zmudzka E.; Lustyk K.; Zagaja M.; Brighenti V.; Costa A. M.; Andres-Mach M.; Pytka K.; Martinelli I.; Mandrioli J.; et al. Therapeutic Potential of Stilbenes in Neuropsychiatric and Neurological Disorders: A Comprehensive Review of Preclinical and Clinical Evidence. Phytother. Res. 2024, 38, 1400–1461. 10.1002/ptr.8101. PubMed DOI
Borgonovo G.; Caimi S.; Morini G.; Scaglioni L.; Bassoli A. Taste-active Compounds in a Traditional Italian Food: ‘Lampascioni’. Chem. Biodivers. 2008, 5, 1184–1194. 10.1002/cbdv.200890095. PubMed DOI
Mabry T. J.; Markham K. R.; Thomas M. B.. The Systematic Identification of Flavonoids; Springer: Berlin, 1970.10.1007/978-3-642-88458-0. DOI
Koorbanally N. A.; Crouch N. R.; Harilal A.; Pillay B.; Mulholland D. A. Coincident Isolation of a Novel Homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae). Biochem. Syst. Ecol. 2006, 34, 114–118. 10.1016/j.bse.2005.08.003. DOI
Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI
Pracht P.; Bohle F.; Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. 10.1039/C9CP06869D. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16; Gaussian, Inc.: Wallingford, CT, 2016.
Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Hehre W. J.; Ditchfield R.; Pople J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. 10.1063/1.1677527. DOI
Clark T.; Chandrasekhar J.; Spitznagel G. W.; Schleyer P. V. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. 10.1002/jcc.540040303. DOI
Frisch M. J.; Pople J. A.; Binkley J. S. Self-Consistent Molecular-Orbital Methods. 25. Supplementary Functions for Gaussian-Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. 10.1063/1.447079. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI
Lodewyk M. W.; Siebert M. R.; Tantillo D. J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839–1862. 10.1021/cr200106v. PubMed DOI
Rablen P. R.; Pearlman S. A.; Finkbiner J. A Comparison of Density Functional Methods for the Estimation of Proton Chemical Shifts with Chemical Accuracy. J. Phys. Chem. A 1999, 103, 7357–7363. 10.1021/jp9916889. DOI
Jain R.; Bally T.; Rablen P. R. Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets. J. Org. Chem. 2009, 74, 4017–4023. 10.1021/jo900482q. PubMed DOI
Bally T.; Rablen P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton-Proton Coupling Constants in Organic Molecules. J. Org. Chem. 2011, 76, 4818–4830. 10.1021/jo200513q. PubMed DOI
Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI
Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/PhysRevLett.52.997. DOI
Nishida Y.; Wada K.; Toyohisa D.; Tanaka T.; Ono M.; Yasuda S. Homoisoflavones as the Antioxidants Responsible from Bulbs of Scilla scilloides. Nat. Prod. Res. 2013, 27, 2360–2362. 10.1080/14786419.2013.830218. PubMed DOI
Teponno R. B.; Ponou B. K.; Fiorini D.; Barboni L.; Tapondjou L. A. Chemical Constituents from the Roots of Furcraea bedinghausii Koch. Int. Lett. Chem. Phys. Astron. 2013, 16, 9–19. 10.56431/p-i1m5h3. DOI
Kwon D.-J.; Bae Y.-S. Stilbenoids of Korean Pine (Pinus koraiensis) Inner Bark. J. Korean Wood Sci. Technol. 2009, 37, 474–479.
Nishida Y.; Eto M.; Miyashita H.; Ikeda T.; Yamaguchi K.; Yoshimitsu H.; Nohara T.; Ono M. A New Homostilbene and Two New Homoisoflavones from the Bulbs of Scilla scilloides. Chem. Pharm. Bull. 2008, 56, 1022–1025. 10.1248/cpb.56.1022. PubMed DOI
Adinolfi M.; Lanzetta R.; Laonigro G.; Parrilli M.; Breitmaier E. 1H and 13C Chemical Shift Assignments of Homoisoflavanones. Magn. Reson. Chem. 1986, 24, 663–666. 10.1002/mrc.1260240806. DOI
Hafez Ghoran S.; Firuzi O.; Pirhadi S.; Khattab O. M.; El-Seedi H. R.; Jassbi A. R. Sappanin-type Homoisoflavonoids from Scilla bisotunensis Speta.: Cytotoxicity, Molecular Docking, and Chemotaxonomic Significance. J. Mol. Struct. 2023, 1273, 13432610.1016/j.molstruc.2022.134326. DOI
Schwikkard S.; Whitmore H.; Sishtla K.; Sulaiman R. S.; Shetty T.; Basavarajappa H. D.; Waller C.; Alqahtani A.; Frankemoelle L.; Chapman A.; et al. The Antiangiogenic Activity of Naturally Occurring and Synthetic Homoisoflavonoids from the Hyacinthaceae (sensu APGII). J. Nat. Prod. 2019, 82, 1227–1239. 10.1021/acs.jnatprod.8b00989. PubMed DOI PMC