• This record comes from PubMed

Cytotoxic Stilbenoids, Hetero- and Homodimers of Homoisoflavonoids from Prospero autumnale

. 2025 Feb 28 ; 88 (2) : 458-468. [epub] 20250124

Language English Country United States Media print-electronic

Document type Journal Article

An activity-guided isolation study on the EtOH extract prepared from the bulbs of Prospero autumnale yielded four new phenolic compounds, including a new stilbenoid (1), a new homoisoflavonoid derivative (8), a new homoisoflavonoid dimer (9), and an unprecedented homoisoflavone-stilbene heterodimer (10), together with six known (2-7) analogs. Their chemical structures were elucidated by spectroscopic analysis and theoretical NMR and ECD calculations. Compounds 9 and 10 are unique in their scaffolds. The in vitro cytotoxic activity of purified compounds was evaluated against eight tumor cell lines (HCT116, LoVo, DU145, PC3, HEP3B, HEPG2, MCF7, and MDA-MB-231) and one nontumor cell line (L929) by the MTS assay. Compounds 1, 2, 4, and 10 exhibited inhibition with IC50 values ranging from 8.2 to 37.6 μM. Cytotoxic cell death mechanisms were further investigated, indicating variability in apoptosis, necrosis, or cell cycle arrest.

See more in PubMed

POWO . Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org (accessed June 13, 2024).

WFO . World Flora Online. https://www.worldfloraonline.org (accessed June 13, 2024).

Mammadov R.; Kaska A.; Ozay C. Phenolic Composition, Antioxidant and Cytotoxic Activities of Prospero autumnale. Indian J. Pharm. Sci. 2017, 79, 585–590. 10.4172/pharmaceutical-sciences.1000266. DOI

El-Elimat T.; Al-Qiam R.; Burdette J. E.; Al Sharie A. H.; Al-Gharaibeh M.; Oberlies N. H. Homoisoflavonoids from the Bulbs of Bellevalia longipes and an Assessment of Their Potential Cytotoxic Activity. Phytochemistry 2022, 203, 11334310.1016/j.phytochem.2022.113343. PubMed DOI PMC

Thu Z. M.; Myo K. K.; Aung H. T.; Armijos C.; Vidari G. Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities. Molecules 2020, 25, 2608.10.3390/molecules25112608. PubMed DOI PMC

Lin L. G.; Liu Q. Y.; Ye Y. Naturally Occurring Homoisoflavonoids and Their Pharmacological Activities. Planta Med. 2014, 80, 1053–1066. 10.1055/s-0034-1383026. PubMed DOI

Famuyiwa S. O.; Patil R. B.; Faloye K. O.; Awotuya I. O.; Gadhawe S. P.; Oladiran O. J.; Bello O. I. Sappanin-type Homoisoflavonoids from Scilla nervosa Inhibits Acetylcholinesterase Enzyme: A Combined in silico and in vitro Approach. J. Biomol. Struct. Dyn. 2023, 41, 10957–10968. 10.1080/07391102.2023.2190825. PubMed DOI

Socala K.; Zmudzka E.; Lustyk K.; Zagaja M.; Brighenti V.; Costa A. M.; Andres-Mach M.; Pytka K.; Martinelli I.; Mandrioli J.; et al. Therapeutic Potential of Stilbenes in Neuropsychiatric and Neurological Disorders: A Comprehensive Review of Preclinical and Clinical Evidence. Phytother. Res. 2024, 38, 1400–1461. 10.1002/ptr.8101. PubMed DOI

Borgonovo G.; Caimi S.; Morini G.; Scaglioni L.; Bassoli A. Taste-active Compounds in a Traditional Italian Food: ‘Lampascioni’. Chem. Biodivers. 2008, 5, 1184–1194. 10.1002/cbdv.200890095. PubMed DOI

Mabry T. J.; Markham K. R.; Thomas M. B.. The Systematic Identification of Flavonoids; Springer: Berlin, 1970.10.1007/978-3-642-88458-0. DOI

Koorbanally N. A.; Crouch N. R.; Harilal A.; Pillay B.; Mulholland D. A. Coincident Isolation of a Novel Homoisoflavonoid from Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae). Biochem. Syst. Ecol. 2006, 34, 114–118. 10.1016/j.bse.2005.08.003. DOI

Bannwarth C.; Ehlert S.; Grimme S. GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. 10.1021/acs.jctc.8b01176. PubMed DOI

Pracht P.; Bohle F.; Grimme S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. Phys. Chem. Chem. Phys. 2020, 22, 7169–7192. 10.1039/C9CP06869D. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16; Gaussian, Inc.: Wallingford, CT, 2016.

Becke A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter. 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Hehre W. J.; Ditchfield R.; Pople J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. 10.1063/1.1677527. DOI

Clark T.; Chandrasekhar J.; Spitznagel G. W.; Schleyer P. V. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. 10.1002/jcc.540040303. DOI

Frisch M. J.; Pople J. A.; Binkley J. S. Self-Consistent Molecular-Orbital Methods. 25. Supplementary Functions for Gaussian-Basis Sets. J. Chem. Phys. 1984, 80, 3265–3269. 10.1063/1.447079. DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI

Lodewyk M. W.; Siebert M. R.; Tantillo D. J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry. Chem. Rev. 2012, 112, 1839–1862. 10.1021/cr200106v. PubMed DOI

Rablen P. R.; Pearlman S. A.; Finkbiner J. A Comparison of Density Functional Methods for the Estimation of Proton Chemical Shifts with Chemical Accuracy. J. Phys. Chem. A 1999, 103, 7357–7363. 10.1021/jp9916889. DOI

Jain R.; Bally T.; Rablen P. R. Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets. J. Org. Chem. 2009, 74, 4017–4023. 10.1021/jo900482q. PubMed DOI

Bally T.; Rablen P. R. Quantum-Chemical Simulation of 1H NMR Spectra. 2. Comparison of DFT-Based Procedures for Computing Proton-Proton Coupling Constants in Organic Molecules. J. Org. Chem. 2011, 76, 4818–4830. 10.1021/jo200513q. PubMed DOI

Yanai T.; Tew D. P.; Handy N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. 10.1016/j.cplett.2004.06.011. DOI

Runge E.; Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Phys. Rev. Lett. 1984, 52, 997–1000. 10.1103/PhysRevLett.52.997. DOI

Nishida Y.; Wada K.; Toyohisa D.; Tanaka T.; Ono M.; Yasuda S. Homoisoflavones as the Antioxidants Responsible from Bulbs of Scilla scilloides. Nat. Prod. Res. 2013, 27, 2360–2362. 10.1080/14786419.2013.830218. PubMed DOI

Teponno R. B.; Ponou B. K.; Fiorini D.; Barboni L.; Tapondjou L. A. Chemical Constituents from the Roots of Furcraea bedinghausii Koch. Int. Lett. Chem. Phys. Astron. 2013, 16, 9–19. 10.56431/p-i1m5h3. DOI

Kwon D.-J.; Bae Y.-S. Stilbenoids of Korean Pine (Pinus koraiensis) Inner Bark. J. Korean Wood Sci. Technol. 2009, 37, 474–479.

Nishida Y.; Eto M.; Miyashita H.; Ikeda T.; Yamaguchi K.; Yoshimitsu H.; Nohara T.; Ono M. A New Homostilbene and Two New Homoisoflavones from the Bulbs of Scilla scilloides. Chem. Pharm. Bull. 2008, 56, 1022–1025. 10.1248/cpb.56.1022. PubMed DOI

Adinolfi M.; Lanzetta R.; Laonigro G.; Parrilli M.; Breitmaier E. 1H and 13C Chemical Shift Assignments of Homoisoflavanones. Magn. Reson. Chem. 1986, 24, 663–666. 10.1002/mrc.1260240806. DOI

Hafez Ghoran S.; Firuzi O.; Pirhadi S.; Khattab O. M.; El-Seedi H. R.; Jassbi A. R. Sappanin-type Homoisoflavonoids from Scilla bisotunensis Speta.: Cytotoxicity, Molecular Docking, and Chemotaxonomic Significance. J. Mol. Struct. 2023, 1273, 13432610.1016/j.molstruc.2022.134326. DOI

Schwikkard S.; Whitmore H.; Sishtla K.; Sulaiman R. S.; Shetty T.; Basavarajappa H. D.; Waller C.; Alqahtani A.; Frankemoelle L.; Chapman A.; et al. The Antiangiogenic Activity of Naturally Occurring and Synthetic Homoisoflavonoids from the Hyacinthaceae (sensu APGII). J. Nat. Prod. 2019, 82, 1227–1239. 10.1021/acs.jnatprod.8b00989. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...