Structural and Dynamical Response of Lipid Bilayers to Solvation of an Amphiphilic Anesthetic
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39856535
PubMed Central
PMC11808788
DOI
10.1021/acs.jpcb.4c05176
Knihovny.cz E-zdroje
- MeSH
- anestetika chemie MeSH
- benzylalkohol chemie MeSH
- difrakce rentgenového záření MeSH
- dimyristoylfosfatidylcholin * chemie MeSH
- lipidové dvojvrstvy * chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární struktura MeSH
- povrchově aktivní látky chemie MeSH
- rozpustnost * MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anestetika MeSH
- benzylalkohol MeSH
- dimyristoylfosfatidylcholin * MeSH
- lipidové dvojvrstvy * MeSH
- povrchově aktivní látky MeSH
- voda MeSH
The structural response of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (2H NMR, 31P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain. Such findings were made probably for the first time for any lipid bilayer system and possibly have more general implications for dissolution of other small-molecule amphiphilic solutes in lipid bilayer systems other than DMPC. The limit to the hydrocarbon chain profile is probably a more general property and corresponds to the balance of intrabilayer and interbilayer forces established in combination with the elastic properties of the bilayer system that still consists of one single phase just before the solute forms an excess phase. It is not necessary to quantify the contribution of each individual intrabilayer and interbilayer force acting within such a bilayer system. A model of the dependence of surface density of lipid chains on the chain segment order parameter was also developed - an empirical mathematical model based on experimental data was derived and it was proposed to represent a relationship between intrinsic bilayer forces and bilayer deformation characteristics and might be proven to be of more general significance in the future.
Zobrazit více v PubMed
Okayama A.; Hoshino T.; Wada K.; Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem. Phys. Lipids 2024, 259, 10537610.1016/j.chemphyslip.2024.105376. PubMed DOI
Colley C. M.; Metcalfe J. C. The localisation of small molecules in lipid bilayers. FEBS Lett. 1972, 24, 241–246. 10.1016/0014-5793(72)80364-8. PubMed DOI
Pope J. M.; Dubro D.; Doane J. W.; Westerman P. W. The ordering of benzyl alcohol and its influence on phospholipid order in bilayer membranes. J. Am. Chem. Soc. 1986, 108, 5426–5433. 10.1021/ja00278a009. DOI
Boden N.; Bushby R. J.; Knowles P. F.; Sixl F. Partial molecular surface areas as a probe of chemical equilibria in lipid bilayers: Anti-cooperative binding of benzyl alcohol to dimyristoyl phosphatidylcholine. Chem. Phys. Lett. 1988, 145 (4), 315–320. 10.1016/0009-2614(88)80014-9. DOI
Marqusee J. A.; Dill K. A. Solute partitioning into chain molecule interphases: Monolayers, bilayer membranes, and micelles. J. Chem. Phys. 1986, 85, 434–444. 10.1063/1.451621. DOI
López Cascales J. J.; Hérnandez Cifre J. G.; García de la Torre J. Anaesthetic mechanism on a model biological membrane: A Molecular dynamics simulation study. J. Phys. Chem. B 1998, 102, 625–631. 10.1021/jp9714532. DOI
Boden N.; Jones S. A.; Sixl F. On the use of deuterium nuclear magnetic resonance as a probe of chain packing in lipid bilayers. Biochemistry 1991, 30, 2146–2155. 10.1021/bi00222a019. PubMed DOI
Boden N.; Jones S. A.; Sixl F. Solubilization in lyotropic liquid crystals: the concept of partial molecular surface area. J. Phys. Chem. 1987, 91, 137–145. 10.1021/j100285a031. DOI
Kamaya H.; Kaneshina S.; Ueda I. Partition equilibrium of inhalation anesthetics and alcohols between water and membranes of phospholipids with varying acyl chain-lengths. Biochim. Biophys. Acta - Biomembranes 1981, 646, 135–142. 10.1016/0005-2736(81)90280-7. PubMed DOI
Ceve G.; Marsh D.. Phospholipid Bilayers: Physical principles and models; John Wiley and Sons: New York, 1987.
Marčelja S. Chain ordering in liquid crystals: II. Structure of bilayer membranes. Biochim. Biophys. Acta 1974, 367, 165–176. 10.1016/0005-2736(74)90040-6. PubMed DOI
Nagle J. F. Theory of biomembrane phase transitions. J. Chem. Phys. 1973, 58, 252–264. 10.1063/1.1678914. DOI
Drabik D.; Chodaczek G.; Kraszewski S.; Langner M. Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers. Langmuir 2020, 36, 3826–3835. 10.1021/acs.langmuir.0c00475. PubMed DOI PMC
Mely B.; Charvolin J.; Keller P. Disorder of lipid chains as a function of their lateral packing in lyotropic liquid crystals. Chem. Phys. Lipids 1975, 15, 161–173. 10.1016/0009-3084(75)90039-0. DOI
De Young L. R.; Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry 1988, 27, 5281–5289. 10.1021/bi00414a050. PubMed DOI
Luzzati V.Biological Membranes (ed.Chapman D.); 1, Academic Press: New York, 1968, 71–123.
Henriksen J.; Rowat A. C.; Brief E.; Hsueh Y. W.; Thewalt J. L.; Zuckermann M. J.; Ipsen J. H. Universal behavior of membranes with sterols. Biophys. J. 2006, 90, 1639–1649. 10.1529/biophysj.105.067652. PubMed DOI PMC
Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 1977, 10, 353–418. 10.1017/S0033583500002948. PubMed DOI
Petrache H. I.; Dodd S. W.; Brown M. F. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 2000, 79, 3172–3192. 10.1016/S0006-3495(00)76551-9. PubMed DOI PMC
Seelig A.; Seelig J. Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 1974, 13, 4839–4845. 10.1021/bi00720a024. PubMed DOI
Oldfield E.; Meadows M.; Rice D.; Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effect of cholesterol in model systems. Biochemistry 1978, 17, 2727–2739. 10.1021/bi00607a006. PubMed DOI
Turnbull P. J. H.The interaction of benzyl alcohol with lipid bilayers. Ph.D. Thesis, University of Leeds: 1990.
Schindler H.; Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. Statistical mechanical interpretation. Biochemistry 1975, 14, 2283–2287. 10.1021/bi00682a001. PubMed DOI
Dill K. A.; Flory P. J. Interphases of chain molecules: Monolayers and lipid bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 3115–3119. 10.1073/pnas.77.6.3115. PubMed DOI PMC
Nagle J. F. Area/lipid of bilayers from NMR. Biophys. J. 1993, 64, 1476–1481. 10.1016/S0006-3495(93)81514-5. PubMed DOI PMC
Aggeli A.; Boden N.; Cheng Y.-L.; Findlay J. B. C.; Knowles P. F.; Kovatchev P.; Turnbull P. J. H.; Horváth L.; Marsh D. Peptides Modeled on the Transmembrane Region of the Slow Voltage-Gated IsK Potassium Channel: Structural Characterization of Peptide Assemblies in the β-Strand Conformation. Biochemistry 1996, 35 (50), 16213–16221. 10.1021/bi960891g. PubMed DOI
Gupta C. M.; Radhakrishnan R.; Khorana H. G. Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 4315.10.1073/pnas.74.10.4315. PubMed DOI PMC
Davis J. H.; Jeffrey K. R.; Bloom M.; Valic M. I.; Higgs T. P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 1976, 42, 390–394. 10.1016/0009-2614(76)80392-2. DOI
Dietrich R.; Trahms L. The principal values of axial chemical-shift tensors in powder spectra. J. Magn. Reson. 1987, 71, 337–341. 10.1016/0022-2364(87)90065-5. DOI
Nagle J. F.; Tristram-Nagle S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159–195. 10.1016/S0304-4157(00)00016-2. PubMed DOI PMC
Zhang Y.-P.Interaction of gramicidin-A with dimyristoyl phosphatidylcholine bilayers. Ph.D. Thesis, Astbury Department of Biophysics, University of Leeds: 1988.
Hauser H.; Pascher I.; Pearson R. H.; Sundell S. Biochim. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biophys. Acta 1981, 650, 21–51. 10.1016/0304-4157(81)90007-1. PubMed DOI
Pitter P.; Tucek F.; Chudoba J.; Zacek L.. Laboratory Methods in Technology of Water (in the Czech language); SNTL: Alfa, Bratislava, 1983, 266–274.
Tirpák A.Electricity and Magnetism (in the Slovak language); Polygrafia SAV: Bratislava, 1999, 223–225.
Press W. H.; Teukolsky S. A.; Vetterling W. T.; Flannery B. P.. Numerical Recipes in Fortran; Cambridge University Press: Cambridge, 1992.
Nagle J. F.; Wilkinson D. A. Lecithin bilayers - density measurement and molecular interactions. Biophys. J. 1978, 23, 159–175. 10.1016/S0006-3495(78)85441-1. PubMed DOI PMC
Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. Biophys. Acta, Rev. Biomembr. 1978, 515, 105–140. 10.1016/0304-4157(78)90001-1. PubMed DOI
Miyoshi T.; Lönnfors M.; Slotte J. P.; Kato S. A detailed analysis of partial molecular volumes in DPPC/cholesterol binary bilayers. Biochim. Biophys. Acta, Biomembr. 2014, 1838, 3069–3077. 10.1016/j.bbamem.2014.07.004. PubMed DOI
Greenwood A. I.; Tristram-Nagle S.; Nagle J. F. Partial molecular volumes of lipids and cholesterol. Chem. Phys. Lipids 2006, 143, 1–10. 10.1016/j.chemphyslip.2006.04.002. PubMed DOI PMC
Gruen D. W. R. A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size. J. Phys. Chem. 1985, 89, 153–163. 10.1021/j100247a033. DOI
Pohorille A.; Wilson M. A. Excess chemical potential of small solutes across water–membrane and water–hexane interfaces. J. Chem. Phys. 1996, 104, 3760–3773. 10.1063/1.471030. PubMed DOI
Turner G. L.; Oldfield E. Effect of a local anaesthetic on hydrocarbon chain order in membranes. Nature (London) 1979, 277, 669–670. 10.1038/277669a0. PubMed DOI
Stouch T. R.; Bassolino D.. Biological Membranes: A Molecular Perspective from Computation and Experiment; Merz K. M. Jr., Roux B., Eds.; Birkhauser: Boston, 1996; pp 255−280.
Barry J. A.; Gawrisch K. Direct NMR Evidence for Ethanol Binding to the Lipid-Water Interface of Phospholipid Bilayers. Biochemistry 1994, 33, 8082–8088. 10.1021/bi00192a013. PubMed DOI
Tanford C.The Hydrophobic Effect: Formation of Micelles and Biological Membranes; John Wiley & Sons: New York, 1980.
Evans E. A.; Waugh R. Mechano-chemistry of closed, vesicular membrane systems. J. Colloid Interface Sci. 1977, 60, 286–298. 10.1016/0021-9797(77)90288-0. DOI
Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, Rev. Biomembr. 1990, 1031, 1–69. 10.1016/0304-4157(90)90002-T. PubMed DOI
Rand R. P. Interacting phospolipid bilayers: Measured forces and induced structural changes. Annu. Rev. Biophys. Bioeng. 1981, 10, 277–314. 10.1146/annurev.bb.10.060181.001425. PubMed DOI
Israelachvili J. N.Intermolecular and Surface Forces; Academic Press: London, 1992.
Šturcová A.Studies of interactions of amphiphilic solutes with lipid bilayers. Ph.D. Thesis, SOMS Centre, School of Chemistry, University of Leeds: 2000.