Structural and Dynamical Response of Lipid Bilayers to Solvation of an Amphiphilic Anesthetic

. 2025 Feb 06 ; 129 (5) : 1563-1585. [epub] 20250124

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39856535

The structural response of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (2H NMR, 31P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain. Such findings were made probably for the first time for any lipid bilayer system and possibly have more general implications for dissolution of other small-molecule amphiphilic solutes in lipid bilayer systems other than DMPC. The limit to the hydrocarbon chain profile is probably a more general property and corresponds to the balance of intrabilayer and interbilayer forces established in combination with the elastic properties of the bilayer system that still consists of one single phase just before the solute forms an excess phase. It is not necessary to quantify the contribution of each individual intrabilayer and interbilayer force acting within such a bilayer system. A model of the dependence of surface density of lipid chains on the chain segment order parameter was also developed - an empirical mathematical model based on experimental data was derived and it was proposed to represent a relationship between intrinsic bilayer forces and bilayer deformation characteristics and might be proven to be of more general significance in the future.

Zobrazit více v PubMed

Okayama A.; Hoshino T.; Wada K.; Takahashi H. Comparison of structural effects of cholesterol, lanosterol, and oxysterol on phospholipid (POPC) bilayers. Chem. Phys. Lipids 2024, 259, 10537610.1016/j.chemphyslip.2024.105376. PubMed DOI

Colley C. M.; Metcalfe J. C. The localisation of small molecules in lipid bilayers. FEBS Lett. 1972, 24, 241–246. 10.1016/0014-5793(72)80364-8. PubMed DOI

Pope J. M.; Dubro D.; Doane J. W.; Westerman P. W. The ordering of benzyl alcohol and its influence on phospholipid order in bilayer membranes. J. Am. Chem. Soc. 1986, 108, 5426–5433. 10.1021/ja00278a009. DOI

Boden N.; Bushby R. J.; Knowles P. F.; Sixl F. Partial molecular surface areas as a probe of chemical equilibria in lipid bilayers: Anti-cooperative binding of benzyl alcohol to dimyristoyl phosphatidylcholine. Chem. Phys. Lett. 1988, 145 (4), 315–320. 10.1016/0009-2614(88)80014-9. DOI

Marqusee J. A.; Dill K. A. Solute partitioning into chain molecule interphases: Monolayers, bilayer membranes, and micelles. J. Chem. Phys. 1986, 85, 434–444. 10.1063/1.451621. DOI

López Cascales J. J.; Hérnandez Cifre J. G.; García de la Torre J. Anaesthetic mechanism on a model biological membrane: A Molecular dynamics simulation study. J. Phys. Chem. B 1998, 102, 625–631. 10.1021/jp9714532. DOI

Boden N.; Jones S. A.; Sixl F. On the use of deuterium nuclear magnetic resonance as a probe of chain packing in lipid bilayers. Biochemistry 1991, 30, 2146–2155. 10.1021/bi00222a019. PubMed DOI

Boden N.; Jones S. A.; Sixl F. Solubilization in lyotropic liquid crystals: the concept of partial molecular surface area. J. Phys. Chem. 1987, 91, 137–145. 10.1021/j100285a031. DOI

Kamaya H.; Kaneshina S.; Ueda I. Partition equilibrium of inhalation anesthetics and alcohols between water and membranes of phospholipids with varying acyl chain-lengths. Biochim. Biophys. Acta - Biomembranes 1981, 646, 135–142. 10.1016/0005-2736(81)90280-7. PubMed DOI

Ceve G.; Marsh D.. Phospholipid Bilayers: Physical principles and models; John Wiley and Sons: New York, 1987.

Marčelja S. Chain ordering in liquid crystals: II. Structure of bilayer membranes. Biochim. Biophys. Acta 1974, 367, 165–176. 10.1016/0005-2736(74)90040-6. PubMed DOI

Nagle J. F. Theory of biomembrane phase transitions. J. Chem. Phys. 1973, 58, 252–264. 10.1063/1.1678914. DOI

Drabik D.; Chodaczek G.; Kraszewski S.; Langner M. Mechanical properties determination of DMPC, DPPC, DSPC, and HSPC solid-ordered bilayers. Langmuir 2020, 36, 3826–3835. 10.1021/acs.langmuir.0c00475. PubMed DOI PMC

Mely B.; Charvolin J.; Keller P. Disorder of lipid chains as a function of their lateral packing in lyotropic liquid crystals. Chem. Phys. Lipids 1975, 15, 161–173. 10.1016/0009-3084(75)90039-0. DOI

De Young L. R.; Dill K. A. Solute partitioning into lipid bilayer membranes. Biochemistry 1988, 27, 5281–5289. 10.1021/bi00414a050. PubMed DOI

Luzzati V.Biological Membranes (ed.Chapman D.); 1, Academic Press: New York, 1968, 71–123.

Henriksen J.; Rowat A. C.; Brief E.; Hsueh Y. W.; Thewalt J. L.; Zuckermann M. J.; Ipsen J. H. Universal behavior of membranes with sterols. Biophys. J. 2006, 90, 1639–1649. 10.1529/biophysj.105.067652. PubMed DOI PMC

Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 1977, 10, 353–418. 10.1017/S0033583500002948. PubMed DOI

Petrache H. I.; Dodd S. W.; Brown M. F. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys. J. 2000, 79, 3172–3192. 10.1016/S0006-3495(00)76551-9. PubMed DOI PMC

Seelig A.; Seelig J. Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 1974, 13, 4839–4845. 10.1021/bi00720a024. PubMed DOI

Oldfield E.; Meadows M.; Rice D.; Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effect of cholesterol in model systems. Biochemistry 1978, 17, 2727–2739. 10.1021/bi00607a006. PubMed DOI

Turnbull P. J. H.The interaction of benzyl alcohol with lipid bilayers. Ph.D. Thesis, University of Leeds: 1990.

Schindler H.; Seelig J. Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. Statistical mechanical interpretation. Biochemistry 1975, 14, 2283–2287. 10.1021/bi00682a001. PubMed DOI

Dill K. A.; Flory P. J. Interphases of chain molecules: Monolayers and lipid bilayer membranes. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 3115–3119. 10.1073/pnas.77.6.3115. PubMed DOI PMC

Nagle J. F. Area/lipid of bilayers from NMR. Biophys. J. 1993, 64, 1476–1481. 10.1016/S0006-3495(93)81514-5. PubMed DOI PMC

Aggeli A.; Boden N.; Cheng Y.-L.; Findlay J. B. C.; Knowles P. F.; Kovatchev P.; Turnbull P. J. H.; Horváth L.; Marsh D. Peptides Modeled on the Transmembrane Region of the Slow Voltage-Gated IsK Potassium Channel: Structural Characterization of Peptide Assemblies in the β-Strand Conformation. Biochemistry 1996, 35 (50), 16213–16221. 10.1021/bi960891g. PubMed DOI

Gupta C. M.; Radhakrishnan R.; Khorana H. G. Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 4315.10.1073/pnas.74.10.4315. PubMed DOI PMC

Davis J. H.; Jeffrey K. R.; Bloom M.; Valic M. I.; Higgs T. P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 1976, 42, 390–394. 10.1016/0009-2614(76)80392-2. DOI

Dietrich R.; Trahms L. The principal values of axial chemical-shift tensors in powder spectra. J. Magn. Reson. 1987, 71, 337–341. 10.1016/0022-2364(87)90065-5. DOI

Nagle J. F.; Tristram-Nagle S. Structure of lipid bilayers. Biochim. Biophys. Acta 2000, 1469, 159–195. 10.1016/S0304-4157(00)00016-2. PubMed DOI PMC

Zhang Y.-P.Interaction of gramicidin-A with dimyristoyl phosphatidylcholine bilayers. Ph.D. Thesis, Astbury Department of Biophysics, University of Leeds: 1988.

Hauser H.; Pascher I.; Pearson R. H.; Sundell S. Biochim. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biophys. Acta 1981, 650, 21–51. 10.1016/0304-4157(81)90007-1. PubMed DOI

Pitter P.; Tucek F.; Chudoba J.; Zacek L.. Laboratory Methods in Technology of Water (in the Czech language); SNTL: Alfa, Bratislava, 1983, 266–274.

Tirpák A.Electricity and Magnetism (in the Slovak language); Polygrafia SAV: Bratislava, 1999, 223–225.

Press W. H.; Teukolsky S. A.; Vetterling W. T.; Flannery B. P.. Numerical Recipes in Fortran; Cambridge University Press: Cambridge, 1992.

Nagle J. F.; Wilkinson D. A. Lecithin bilayers - density measurement and molecular interactions. Biophys. J. 1978, 23, 159–175. 10.1016/S0006-3495(78)85441-1. PubMed DOI PMC

Seelig J. 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. Biophys. Acta, Rev. Biomembr. 1978, 515, 105–140. 10.1016/0304-4157(78)90001-1. PubMed DOI

Miyoshi T.; Lönnfors M.; Slotte J. P.; Kato S. A detailed analysis of partial molecular volumes in DPPC/cholesterol binary bilayers. Biochim. Biophys. Acta, Biomembr. 2014, 1838, 3069–3077. 10.1016/j.bbamem.2014.07.004. PubMed DOI

Greenwood A. I.; Tristram-Nagle S.; Nagle J. F. Partial molecular volumes of lipids and cholesterol. Chem. Phys. Lipids 2006, 143, 1–10. 10.1016/j.chemphyslip.2006.04.002. PubMed DOI PMC

Gruen D. W. R. A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size. J. Phys. Chem. 1985, 89, 153–163. 10.1021/j100247a033. DOI

Pohorille A.; Wilson M. A. Excess chemical potential of small solutes across water–membrane and water–hexane interfaces. J. Chem. Phys. 1996, 104, 3760–3773. 10.1063/1.471030. PubMed DOI

Turner G. L.; Oldfield E. Effect of a local anaesthetic on hydrocarbon chain order in membranes. Nature (London) 1979, 277, 669–670. 10.1038/277669a0. PubMed DOI

Stouch T. R.; Bassolino D.. Biological Membranes: A Molecular Perspective from Computation and Experiment; Merz K. M. Jr., Roux B., Eds.; Birkhauser: Boston, 1996; pp 255−280.

Barry J. A.; Gawrisch K. Direct NMR Evidence for Ethanol Binding to the Lipid-Water Interface of Phospholipid Bilayers. Biochemistry 1994, 33, 8082–8088. 10.1021/bi00192a013. PubMed DOI

Tanford C.The Hydrophobic Effect: Formation of Micelles and Biological Membranes; John Wiley & Sons: New York, 1980.

Evans E. A.; Waugh R. Mechano-chemistry of closed, vesicular membrane systems. J. Colloid Interface Sci. 1977, 60, 286–298. 10.1016/0021-9797(77)90288-0. DOI

Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta, Rev. Biomembr. 1990, 1031, 1–69. 10.1016/0304-4157(90)90002-T. PubMed DOI

Rand R. P. Interacting phospolipid bilayers: Measured forces and induced structural changes. Annu. Rev. Biophys. Bioeng. 1981, 10, 277–314. 10.1146/annurev.bb.10.060181.001425. PubMed DOI

Israelachvili J. N.Intermolecular and Surface Forces; Academic Press: London, 1992.

Šturcová A.Studies of interactions of amphiphilic solutes with lipid bilayers. Ph.D. Thesis, SOMS Centre, School of Chemistry, University of Leeds: 2000.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...