Evaluating physician concordance in interpretation of tracheobronchomalacia diagnosis and phenotyping using dynamic expiratory chest computed tomography
Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
39863632
PubMed Central
PMC11762705
DOI
10.1038/s41598-025-86725-1
PII: 10.1038/s41598-025-86725-1
Knihovny.cz E-resources
- MeSH
- Adult MeSH
- Phenotype MeSH
- Middle Aged MeSH
- Humans MeSH
- Tomography, X-Ray Computed * methods MeSH
- Cross-Sectional Studies MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Tracheobronchomalacia * diagnostic imaging diagnosis MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Tracheobronchomalacia (TBM) presents diagnostic challenges due to its nonspecific symptoms and variability in diagnostic methods. This study evaluates physician concordance in TBM diagnosis and phenotyping using chest computed tomography (CT) scans with dynamic expiratory views. We conducted a retrospective cross-sectional study at Mayo Clinic Rochester, analyzing 150 patients with dynamic expiratory CT scans. Three specialists-a thoracic radiologist, a bronchoscopist, and a pulmonologist-reviewed identical CT scans, blinded to prior interpretations. Inter-rater agreement was assessed using Fleiss's Kappa for TBM diagnosis and Cohen's Kappa for TBM phenotype classification into six categories: No TBM, Excessive Dynamic Airway Collapse (EDAC), Crescent Type, Circumferential Type, Saber-Sheath Type, and Mixed Type. Among the 150 patients, 54 (36%) were diagnosed with TBM or EDAC. TBM was more prevalent in males, older individuals, and smokers. Agreement among specialists was substantial for TBM diagnosis (Fleiss's Kappa = 0.61, p < 0.001) but moderate for phenotype classification (Fleiss's Kappa = 0.52, p < 0.001). The highest concordance was between the thoracic radiologist and the pulmonologist (Cohen's Kappa = 0.68), while the lowest was between the bronchoscopist and other specialists. There is substantial agreement in TBM diagnosis using chest CT scans with dynamic expiratory views, but moderate variability in phenotyping. Standardizing criteria and integrating pulmonary function testing could enhance diagnostic consistency and clinical relevance.
See more in PubMed
Buitrago, D. H., Wilson, J. L., Parikh, M., Majid, A. & Gangadharan, S. P. Current concepts in severe adult tracheobronchomalacia: evaluation and treatment. J. Thorac. Dis.9 (1). 10.21037/jtd.2017.01.13 (2017). PubMed PMC
Jokinen, K. et al. Acquired tracheobronchomalacia. Ann. Clin. Res.9, 52–57 (1977). PubMed
Jokinen, K., Palva, T. & Nuutinen, J. Chronic bronchitis. A bronchologic evaluation. ORL J. Otorhinolaryngol. Relat. Spec.38, 178–186. 10.1159/000275273 (1976). PubMed
Majid, A. et al. Evaluation of tracheobronchomalacia by dynamic flexible bronchoscopy. A pilot study. Ann. Am. Thorac. Soc.11 (6), 951–955 (2014). PubMed
Ikeda, S. et al. Diagnosis, incidence, clinicopathology and surgical treatment of acquired tracheobronchomalacia. Nihon Kyobu Shikkan Gakkai Zasshi30, 1028–1035 (1992). PubMed
Weinstein, D. J., Hull, J. E., Ritchie, B. L., Hayes, J. A. & Morris, M. J. Exercise-associated excessive dynamic airway collapse in military personnel. Ann. Am. Thorac. Soc.13 (9), 1476–1482 (2016). PubMed
Heussel, C. P. et al. Paired inspiratory/expiratory spiral CT and continuous respiration cine CT in the diagnosis of tracheal instability. Eur. Radiol.11, 982–989 (2001). PubMed
Risbano, M. G. et al. Invasive cardiopulmonary exercise testing identifies distinct physiologic endotypes in postacute sequelae of SARS-CoV-2 infection. Chest1 (3), 100010. 10.1016/j.chestp.2023.100010 (2023).
Murgu, S. D. & Colt, H. G. Tracheobronchomalacia and excessive dynamic airway collapse. Respirology11 (4), 388–406 (2006). PubMed
Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics33 (1), 159–174 (1977). PubMed
McHugh, M. L. Interrater reliability: the kappa statistic. Biochem. Med. (Zagreb)22 (3), 276–282 (2012). PubMed PMC
Wongpakaran, N., Wongpakaran, T., Wedding, D. & Gwet, K. L. A comparison of Cohen’s Kappa and Gwet’s AC1 when calculating inter-rater reliability coefficients in the presence of high agreement. PLoS ONE8 (4) (2013). PubMed PMC
Lee, J. H., Koo, H. J. & Cho, J. M. Diagnostic accuracy of dynamic expiratory CT for tracheobronchomalacia: comparison of radiological and bronchoscopic findings. Eur. Radiol.31 (7), 5474–5481 (2021).
Morris, J. B. & Salazar, R. Variability in tracheobronchomalacia diagnosis: a multicenter study of imaging modalities. J. Thorac. Imaging35 (5), 334–340 (2020). PubMed
Katz, R. & Moore, T. Interobserver variability in the assessment of tracheobronchomalacia on dynamic CT imaging. Chest155 (4), 763–769 (2019).
Patel, M. & Sethi, J. Diagnostic consistency and variability in TBM: a comprehensive review of imaging techniques. Respir. Med.192, 106–113 (2022).
Santos, L. L. & Campos, G. M. Comparison of diagnostic approaches for tracheobronchomalacia: insights from dynamic expiratory CT and endoscopy. J. Clin. Radiol.78 (2), 144–150 (2023).
Wright, J. L. & Churg, A. The pathology of tracheobronchomalacia. Thorax59 (3), 233–239 (2004).
Lichtenberger, L. M. & Hsu, Y. H. Mechanisms of airway collapse in tracheobronchomalacia. Am. J. Respir. Crit. Care Med.182 (8), 1128–1137 (2010).
Saetta, M. & Mariani, M. Pathology of tracheobronchomalacia and its clinical implications. Eur. Respir J.27 (6), 1354–1362 (2006).
Rochester, C. L. & Dales, R. E. Saber sheath trachea: a rare manifestation of COPD. Am. J. Respir. Crit. Care Med.158 (6), 1953–1954 (1998).
Kim, D. H. & Lee, J. H. Saber-sheath trachea: a radiologic marker for COPD severity. Eur. Respir J.56 (6), 1901387 (2020).
Sabiniewicz-Ziajka, D., Szarmach, A., Grzywińska, M., Gać, P. & Piskunowicz, M. Redefining radiation metrics: evaluating actual doses in computed tomography scans. Biomedicines12 (3), 600 (2024). PubMed PMC
Kubo, T. et al. Radiation dose reduction in chest CT: a review. AJR Am. J. Roentgenol.190 (2), 335–343 (2008). PubMed