Optimizing droplet coalescence dynamics in microchannels: A comprehensive study using response surface methodology and machine learning algorithms
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39866476
PubMed Central
PMC11759632
DOI
10.1016/j.heliyon.2024.e41510
PII: S2405-8440(24)17541-X
Knihovny.cz E-zdroje
- Klíčová slova
- Coalescence, Droplet, Machine learning, Microchannel, Optimization,
- Publikační typ
- časopisecké články MeSH
Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence. Furthermore, we integrate Response Surface Methodology (RSM) to effectively optimize droplet coalescence dynamics, harnessing the power of machine learning algorithms. Our results showcase the efficacy of these computational techniques in enhancing experimental efficiency. Through rigorous evaluation utilizing Regression Coefficient and Mean Absolute Error metrics, we ascertain the accuracy of our estimations. Our findings highlight the significant influence of key parameters, specifically the non-dimensional initial distance of the droplets (D), viscosity ratio ( μ ), Capillary number (Ca), and width (w), as identified by the non-dimensional final droplet-droplet spacing (DD), velocity of the first droplet (VFD), and velocity of the second droplet (VBD), respectively. This comprehensive approach provides valuable insights into droplet coalescence phenomena and offers a robust framework for optimizing microfluidic systems. The most influential parameters on DD are the values of Ad and D, while viscosity has the lowest influence on DD. The most influential parameters on droplet velocity are viscosity and channel width, whereas the initial distance and Ca have the least influence on droplet velocity. The comparison of different machine learning algorithms indicates that the best ones for predicting DD, VFD, and VBD are function, SMOreg, Lazy-IBK, and Meta-Bagging, respectively.
Department of Mechanical Engineering University of Gonabad Gonabad Iran
Department of Physics Shiraz University of Technology Shiraz 71555 313 Iran
Faculty of Mechanical Engineering Tarbiat Modares University Tehran 141171 3116 Iran
Zobrazit více v PubMed
Nguyen N.T., Wereley S.T., Shaegh S.A.M. Artech House; 2019. Fundamentals and Applications of Microfluidics.
Malkin A.Y., et al. Effect of droplet size on the rheological properties of highly-concentrated w/o emulsions. Rheol. Acta. 2004;43(6):584–591.
Kadivar E., Shamsizadeh B. A numerical study of droplet deformation and droplet breakup in a non-orthogonal cross-section. Rheol. Acta. 2020;59(11):771–782.
Kadivar E., Alizadeh A. Numerical simulation and scaling of droplet deformation in a hyperbolic flow. The European Physical Journal E. 2017;40(3):31. PubMed
Xi H.D., et al. Active droplet sorting in microfluidics: a review. Lab Chip. 2017;17(5):751–771. PubMed
Tan Y.-C., Ho Y.L., Lee A.P. Microfluidic sorting of droplets by size. Microfluid. Nanofluidics. 2008;4(4):343–348.
Niedzwiedz K., Buggisch H., Willenbacher N. Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER) Rheol. Acta. 2010;49(11):1103–1116.
Kadivar E., Zarei F. Breakup a droplet passing through an obstacle in an orthogonal cross-section microchannel. Theor. Comput. Fluid Dynam. 2021;35(2):249–264.
Fidalgo L.M., Abell C., Huck W.T. Surface-induced droplet fusion in microfluidic devices. Lab Chip. 2007;7(8):984–986. PubMed
Hung L.H., et al. Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip. 2006;6(2):174–178. PubMed
Verdier C., Brizard M. Understanding droplet coalescence and its use to estimate interfacial tension. Rheol. Acta. 2002;41(6):514–523.
Kadivar E. Magnetocoalescence of ferrofluid droplets in a flat microfluidic channel. Europhys. Lett. 2014;106(2)
Mazutis L., Griffiths A.D. Selective droplet coalescence using microfluidic systems. Lab Chip. 2012;12(10):1800–1806. PubMed
Mukherjee S., Mishra P.C., Chaudhuri P. Stability of heat transfer nanofluids – a review. ChemBioEng Rev. 2018;5(5):312–333.
Chang C., Ji Z., Zeng F. The effect of a drainage layer on filtration performance of coalescing filters. Separation and Purification Technology. 2016;170:370–376.
Eow J.S., Ghadiri M. Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem. Eng. J. 2002;85(2):357–368.
Hu D., et al. Process diagnosis of coalescence separation of oil-in-water emulsions-two case studies. J. Dispersion Sci. Technol. 2019;40(5):745–755.
Bitten J.F. Coalescence of water droplets on single fibers. J. Colloid Interface Sci. 1970;33(2):265–271.
Håkansson A. Experimental methods for measuring coalescence during emulsification – a critical review. J. Food Eng. 2016;178:47–59.
Dahlqvist E., Setterwall F. Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk. Steinkopff; Darmstadt: 1990. The influence of surfactants on coalescence filtration.
Wu M., Cubaud T., Ho C.-M. Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids. 2004;16(7):L51–L54.
Tan Y.C., et al. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip. 2004;4(4):292–298. PubMed
Reichert M.D., Walker L.M. Coalescence behavior of oil droplets coated in irreversibly-adsorbed surfactant layers. J. Colloid Interface Sci. 2015;449:480–487. PubMed
Politova N.I., et al. Coalescence stability of water-in-oil drops: effects of drop size and surfactant concentration. Colloids Surf. A Physicochem. Eng. Asp. 2017;531:32–39.
Schirrmann K., Cáceres-Aravena G., Juel A. Self-assembly of coated microdroplets at the sudden expansion of a microchannel. Microfluid. Nanofluidics. 2021;25(3):29.
Kadivar E., Heidary Zarneh Z. Droplet coalescence in a sudden expansion microchannel. Acta Mech. 2022;233(6):2201–2212.
Ferrás L.L., et al. Newtonian and viscoelastic fluid flows through an abrupt 1:4 expansion with slip boundary conditions. Phys. Fluids. 2020;32(4)
Christopher G.F., et al. Coalescence and splitting of confined droplets at microfluidic junctions. Lab Chip. 2009;9(8):1102–1109. PubMed
Deng Y., et al. Coalescence dynamics of two droplets in T-junction microchannel with a lantern-shaped expansion chamber. J. Taiwan Inst. Chem. Eng. 2022;131
Yang L., et al. Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluid. Nanofluidics. 2012;12(5):715–722.
Liu Z., et al. The influence of channel intersection angle on droplets coalescence process. Exp. Fluid. 2015;56(2):24.
Williams Y.O.N., et al. Modeling droplet coalescence kinetics in microfluidic devices using population balances. Chem. Eng. Sci. 2019;201:475–483.
Blanchette F., Messio L., Bush J.W.M. The influence of surface tension gradients on drop coalescence. Phys. Fluids. 2009;21(7)
Dudek M., Chicault J., Øye G. Microfluidic investigation of crude oil droplet coalescence: effect of oil/water composition and droplet aging. Energy & Fuels. 2020;34(5):5110–5120.
Luong T.-D., Nguyen N.-T., Sposito A. Thermocoalescence of microdroplets in a microfluidic chamber. Appl. Phys. Lett. 2012;100(25)
Xu B., et al. Experimental and numerical investigation on a simple droplet coalescence design in microchannels. Heat Mass Tran. 2019;55(6):1553–1562.
Bera B., Khazal R., Schroën K. Coalescence dynamics in oil-in-water emulsions at elevated temperatures. Sci. Rep. 2021;11(1) PubMed PMC
Wang J., et al. Influence of interfacial gas enrichment on controlled coalescence of oil droplets in water in microfluidics. Langmuir. 2019;35(10):3615–3623. PubMed
Wang Y., et al. Coalescence of binary droplets in the transformer oil based on small amounts of polymer: effects of initial droplet diameter and collision parameter. Polymers. 2020;12(9):2054. PubMed PMC
Yi H., et al. Efficient coalescence of microdroplet in the cross-focused microchannel with symmetrical chamber. J. Taiwan Inst. Chem. Eng. 2020;112:52–59.
Yi H., et al. Interfacial evolution and dynamics of liquid bridge during droplet coalescence in rectangular microchannels: effect of aspect ratio. J. Taiwan Inst. Chem. Eng. 2021;123:59–67.
Mahdi Y., Daoud K. Microdroplet size prediction in microfluidic systems via artificial neural network modeling for water-in-oil emulsion formulation. J. Dispersion Sci. Technol. 2017;38(10):1501–1508.
Lashkaripour A., et al. An adaptive neural-fuzzy approach for microfluidic droplet size prediction. Microelectron. J. 2018;78:73–80.
Mottaghi S., et al. Droplet size prediction in a microfluidic flow focusing device using an adaptive network based fuzzy inference system. Biomed. Microdevices. 2020;22(3):61. PubMed
Srikanth S., et al. Droplet based microfluidics integrated with machine learning. Sensor Actuator Phys. 2021;332
Wikramanayake E., Bahadur V. Statistical modeling of electrowetting-induced droplet coalescence for condensation applications. Colloids Surf. A Physicochem. Eng. Asp. 2020;599
Angardi V., Mohan R., Shoham O. Statistical approach to estimate coalescence of a single droplet at interface affected by aqueous phase composition. J. Petrol. Sci. Eng. 2019;175:804–813.
Hu J., et al. Explainable AI models for predicting drop coalescence in microfluidics device. Chem. Eng. J. 2024;481
Kadivar E. Modeling droplet deformation through converging–diverging microchannels at low Reynolds number. Acta Mech. 2018;229(10):4239–4250.
Dong T., et al. Development of machine learning based droplet diameter prediction model for electrohydrodynamic atomization systems. Chem. Eng. Sci. 2023;268
Park C.W., Homsy G.M. Two-phase displacement in Hele Shaw cells: theory. J. Fluid Mech. 1984;139:291–308.
Batchelor G.K. Cambridge University Press; Cambridge: 2000. An Introduction To Fluid Dynamics. Cambridge Mathematical Library.
Pozrikidis C. first ed. CRC Press; 2002. A Practical Guide to Boundary Element Methods with the Software Library BEMLIB.
Goharimanesh M., et al. Geometric and thermo hydrodynamic investigation of a 3D converging-diverging channel by Taguchi and ANFIS methods. Int. Commun. Heat Mass Tran. 2022;138
Kadivar E., Olfat M., Javadpour S.M. Numerical study and statistical analysis of effective parameters on dielectrophoretic separation of particles using finite element and response surface methods. J. Braz. Soc. Mech. Sci. Eng. 2024;46(8):473.
Javadpour S.M., et al. Optimization of nanofluid flow in a mini-channel with semi-porous fins using response surface methodology based on the Box–Behnken design. Journal of Thermal Analysis and Calorimetry. 2024