• This record comes from PubMed

Telomemore enables single-cell analysis of cell cycle and chromatin condensation

. 2025 Jan 24 ; 53 (3) : .

Language English Country England, Great Britain Media print

Document type Journal Article

Grant support
Swedish National Infrastructure for Computing (SNIC)
2018-05973 Swedish Research Council
2021-06602 Vetenskapsrådet
233102 Swedish Cancer Society
JCK-0055 Kempestiftelserna
KAW 2020.0239 SciLifeLab & Wallenberg Data Driven Life Science Program
Swedish Bibsam Consortium

Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.

See more in PubMed

Allsopp  RC, Vaziri  H, Patterson  C  et al. .  Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992; 89:10114–8.10.1073/pnas.89.21.10114. PubMed DOI PMC

Lim  CJ, Cech  TR.  Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol. 2021; 22:283–98.10.1038/s41580-021-00328-y. PubMed DOI PMC

Savage  SA.  Beginning at the ends: telomeres and human disease. F1000Res. 2018; 7:524.10.12688/f1000research.14068.1. PubMed DOI PMC

Heaphy  CM, Meeker  AK.  The potential utility of telomere-related markers for cancer diagnosis. J Cell Mol Med. 2011; 15:1227–38.10.1111/j.1582-4934.2011.01284.x. PubMed DOI PMC

Tham  C-Y, Poon  L, Yan  T  et al. .  High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. Nat Commun. 2023; 14:281.10.1038/s41467-023-35823-7. PubMed DOI PMC

Maciejowski  J, de Lange  T.  Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017; 18:175–86.10.1038/nrm.2016.171. PubMed DOI PMC

Wang  H, Gong  P, Chen  T  et al. .  Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv Sci. 2021; 8:2004320.10.1002/advs.202004320. PubMed DOI PMC

Buenrostro  JD, Giresi  PG, Zaba  LC  et al. .  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013; 10:1213–8.10.1038/nmeth.2688. PubMed DOI PMC

Schep  AN, Wu  B, Buenrostro  JD  et al. .  chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017; 14:975–8.10.1038/nmeth.4401. PubMed DOI PMC

Delacher  M, Simon  M, Sanderink  L  et al. .  Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity. 2021; 54:702–720.10.1016/j.immuni.2021.03.007. PubMed DOI PMC

Hao  Y, Hao  S, Andersen-Nissen  E  et al. .  Integrated analysis of multimodal single-cell data. Cell. 2021; 184:3573–3587.10.1016/j.cell.2021.04.048. PubMed DOI PMC

Lyu  P, Hoang  T, Santiago  CP  et al. .  Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep. 2021; 37:109994.10.1016/j.celrep.2021.109994. PubMed DOI PMC

Morabito  S, Miyoshi  E, Michael  N  et al. .  Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021; 53:1143–55.10.1038/s41588-021-00894-z. PubMed DOI PMC

Sarropoulos  I, Sepp  M, Frömel  R  et al. .  Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science. 2021; 373:eabg4696.10.1126/science.abg4696. PubMed DOI PMC

Satpathy  AT, Granja  JM, Yost  KE  et al. .  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019; 37:925–36.10.1038/s41587-019-0206-z. PubMed DOI PMC

Taavitsainen  S, Engedal  N, Cao  S  et al. .  Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nat Commun. 2021; 12:5307.10.1038/s41467-021-25624-1. PubMed DOI PMC

Wimmers  F, Donato  M, Kuo  A  et al. .  The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell. 2021; 184:3915–3935.10.1016/j.cell.2021.05.039. PubMed DOI PMC

Ziffra  RS, Kim  CN, Ross  JM  et al. .  Single-cell epigenomics reveals mechanisms of human cortical development. Nature. 2021; 598:205–13.10.1038/s41586-021-03209-8. PubMed DOI PMC

Kinoshita  M, Barber  M, Mansfield  W  et al. .  Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell. 2021; 28:453–471.10.1016/j.stem.2020.11.005. PubMed DOI PMC

Li  Q, Huang  Y, Xu  J  et al. .  p53 inactivation unmasks histone methylation-independent WDR5 functions that drive self-renewal and differentiation of pluripotent stem cells. Stem Cell Rep. 2021; 16:2642–58.10.1016/j.stemcr.2021.10.002. PubMed DOI PMC

Zhang  K, Hocker  JD, Miller  M  et al. .  A single-cell atlas of chromatin accessibility in the human genome. Cell. 2021; 184:5985–6001.10.1016/j.cell.2021.10.024. PubMed DOI PMC

Argelaguet  R, Lohoff  T, Li  JG  et al. .  Decoding gene regulation in the mouse embryo using single-cell multi-omics. bioRxiv15 June 2022, preprint: not peer reviewed10.1101/2022.06.15.496239. DOI

Lopez Chiloeches  M, Bergonzini  A, Martin  OCB  et al. .  Genotoxin-producing Salmonella enterica induces tissue-specific types of DNA damage and DNA damage response outcomes. Front Immunol. 2023; 14:1270449.10.3389/fimmu.2023.1270449. PubMed DOI PMC

Ding  Z, Mangino  M, Aviv  A  et al. .  Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014; 42:e75.10.1093/nar/gku181. PubMed DOI PMC

Márquez  EJ, Chung  C-H, Marches  R  et al. .  Sexual-dimorphism in human immune system aging. Nat Commun. 2020; 11:751.10.1038/s41467-020-14396-9. PubMed DOI PMC

Feuerbach  L, Sieverling  L, Deeg  KI  et al. .  TelomereHunter—in silico estimation of telomere content and composition from cancer genomes. BMC Bioinf. 2019; 20:272.10.1186/s12859-019-2851-0. PubMed DOI PMC

Quinlan  AR, Hall  IM.  BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2.10.1093/bioinformatics/btq033. PubMed DOI PMC

Karimian  K, Groot  A, Huso  V  et al. .  Human telomere length is chromosome end-specific and conserved across individuals. Science. 2024; 384:533–9.10.1126/science.ado0431. PubMed DOI

Karimian  K, Groot  A, Huso  V  et al..  Telomere dataset used for calculating bulk and chromosome specific telomere length. Dryad. 2024; 10.5061/dryad.dz08kps5d. DOI

Cock  PJA, Antao  T, Chang  JT  et al. .  Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25:1422–3.10.1093/bioinformatics/btp163. PubMed DOI PMC

Corces  MR, Granja  JM, Shams  S  et al. .  The chromatin accessibility landscape of primary human cancers. Science. 2018; 362:eaav1898.10.1126/science.aav1898. PubMed DOI PMC

Barthel  FP, Wei  W, Tang  M  et al. .  Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017; 49:349–57.10.1038/ng.3781. PubMed DOI PMC

Reznikoff  WS.  Tn5 as a model for understanding DNA transposition. Mol Microbiol. 2003; 47:1199–206.10.1046/j.1365-2958.2003.03382.x. PubMed DOI

Goryshin  IY, Kil  YV, Reznikoff  WS.  DNA length, bending, and twisting constraints on IS50 transposition. Proc Natl Acad Sci USA. 1994; 91:10834–8. PubMed PMC

Zuker  M.  Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–15.10.1093/nar/gkg595. PubMed DOI PMC

Hennig  BP, Velten  L, Racke  I  et al. .  Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3. 2018; 8:79–89.10.1534/g3.117.300257. PubMed DOI PMC

Grandi  FC, Modi  H, Kampman  L  et al. .  Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022; 17:1518–52.10.1038/s41596-022-00692-9. PubMed DOI PMC

Li  H.  Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–100.10.1093/bioinformatics/bty191. PubMed DOI PMC

Ramírez  F, Ryan  DP, Grüning  B  et al. .  deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016; 44:W160–5.10.1093/nar/gkw257. PubMed DOI PMC

Robinson  JT, Thorvaldsdóttir  H, Winckler  W  et al. .  Integrative genomics viewer. Nat Biotechnol. 2011; 29:24–6.10.1038/nbt.1754. PubMed DOI PMC

Wagih  O.  ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017; 33:3645–7.10.1093/bioinformatics/btx469. PubMed DOI

Watson  JV, Chambers  SH, Smith  PJ.  A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987; 8:1–8.10.1002/cyto.990080101. PubMed DOI

Stuart  T, Srivastava  A, Madad  S  et al. .  Single-cell chromatin state analysis with Signac. Nat Methods. 2021; 18:1333–41.10.1038/s41592-021-01282-5. PubMed DOI PMC

Zhang  Y, Liu  T, Meyer  CA  et al. .  Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137.10.1186/gb-2008-9-9-r137. PubMed DOI PMC

McInnes  L, Healy  J, Melville  J.  UMAP: uniform manifold approximation and projection for dimension reduction. arXiv9 February 2018, preprint: not peer reviewedhttps://arxiv.org/abs/1802.03426.

Aran  D, Looney  AP, Liu  L  et al. .  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019; 20:163–72.10.1038/s41590-018-0276-y. PubMed DOI PMC

Schmiedel  BJ, Singh  D, Madrigal  A  et al. .  Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018; 175:1701–1715.10.1016/j.cell.2018.10.022. PubMed DOI PMC

Mabbott  NA, Baillie  JK, Brown  H  et al. .  An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics. 2013; 14:632.10.1186/1471-2164-14-632. PubMed DOI PMC

Monaco  G, Lee  B, Xu  W  et al. .  RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 2019; 26:1627–1640.10.1016/j.celrep.2019.01.041. PubMed DOI PMC

Chiou  J, Zeng  C, Cheng  Z  et al. .  Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat Genet. 2021; 53:455–66.10.1038/s41588-021-00823-0. PubMed DOI PMC

Ritchie  ME, Phipson  B, Wu  D  et al. .  limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47.10.1093/nar/gkv007. PubMed DOI PMC

Weirauch  MT, Yang  A, Albu  M  et al. .  Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158:1431–43.10.1016/j.cell.2014.08.009. PubMed DOI PMC

Song  L, Cohen  D, Ouyang  Z  et al. .  TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat Methods. 2021; 18:627–30.10.1038/s41592-021-01142-2. PubMed DOI PMC

Huang  X, Huang  Y.  Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics. 2021; 37:4569–71.10.1093/bioinformatics/btab358. PubMed DOI

Huang  Y, McCarthy  DJ, Stegle  O.  Vireo: bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 2019; 20:4569–71.10.1186/s13059-019-1865-2. PubMed DOI PMC

King  HW, Orban  N, Riches  JC  et al. .  Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci Immunol. 2021; 6:eabe6291.10.1126/sciimmunol.abe6291. PubMed DOI

Weng  NP, Granger  L, Hodes  RJ.  Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci USA. 1997; 94:10827–32.10.1073/pnas.94.20.10827. PubMed DOI PMC

Weng  NP, Levine  BL, June  CH  et al. .  Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA. 1995; 92:11091–4.10.1073/pnas.92.24.11091. PubMed DOI PMC

Farmery  JHR, Smith  MLNIHR BioResource - Rare Diseases NIHR BioResource - Rare Diseases Lynch  AG.  Telomerecat: a ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci Rep. 2018; 8:1300.10.1038/s41598-017-14403-y. PubMed DOI PMC

Derevyanko  A, Whittemore  K, Schneider  RP  et al. .  Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell. 2017; 16:1353–68.10.1111/acel.12677. PubMed DOI PMC

Johnson  VL, Cooper  IR, Jenkins  JR  et al. .  Effects of differential overexpression of Bcl-2 on apoptosis, proliferation, and telomerase activity in Jurkat T cells. Exp Cell Res. 1999; 251:175–84.10.1006/excr.1999.4557. PubMed DOI

Berg  DE, Schmandt  MA, Lowe  JB.  Specificity of transposon Tn5 insertion. Genetics. 1983; 105:813–28.10.1093/genetics/105.4.813. PubMed DOI PMC

Hesselberth  JR, Chen  X, Zhang  Z  et al. .  Global mapping of protein–DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009; 6:283–9.10.1038/nmeth.1313. PubMed DOI PMC

Varshney  D, Spiegel  J, Zyner  K  et al. .  The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020; 21:459–74.10.1038/s41580-020-0236-x. PubMed DOI PMC

Green  B, Bouchier  C, Fairhead  C  et al. .  Insertion site preference of mu, Tn5, and Tn7 transposons. Mobile DNA. 2012; 3:3.10.1186/1759-8753-3-3. PubMed DOI PMC

Schaller  H.  The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harbor Symp Quant Biol. 1979; 43:401–8.10.1101/SQB.1979.043.01.046. PubMed DOI

Granja  JM, Corces  MR, Pierce  SE  et al. .  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021; 53:3403–11.10.1038/s41588-021-00790-6. PubMed DOI PMC

Deniz  Ö, Flores  O, Aldea  M  et al. .  Nucleosome architecture throughout the cell cycle. Sci Rep. 2016; 6:19729.10.1038/srep19729. PubMed DOI PMC

Chen  X, Shen  Y, Draper  W  et al. .  ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat Methods. 2016; 13:1013–20.10.1038/nmeth.4031. PubMed DOI PMC

Ondov  BD, Treangen  TJ, Melsted  P  et al. .  Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016; 17:132.10.1186/s13059-016-0997-x. PubMed DOI PMC

Rawlings  JS, Gatzka  M, Thomas  PG  et al. .  Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J. 2011; 30:263–76.10.1038/emboj.2010.314. PubMed DOI PMC

Maestroni  L, Matmati  S, Coulon  S.  Solving the telomere replication problem. Genes. 2017; 8:55.10.3390/genes8020055. PubMed DOI PMC

Tedesco  M, Giannese  F, Lazarević  D  et al. .  Chromatin velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat Biotechnol. 2022; 40:235–44.10.1038/s41587-021-01031-1. PubMed DOI

Cros  J, Cagnard  N, Woollard  K  et al. .  Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010; 33:375–86.10.1016/j.immuni.2010.08.012. PubMed DOI PMC

Eggermann  T, Binder  G, Brioude  F  et al. .  CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014; 20:614–22.10.1016/j.molmed.2014.09.001. PubMed DOI

Rivosecchi  J, Cusanelli  E.  TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. Front Aging. 2023; 4:1224225.10.3389/fragi.2023.1224225. PubMed DOI PMC

Porro  A, Feuerhahn  S, Reichenbach  P  et al. .  Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol. 2010; 30:4808–17.10.1128/MCB.00460-10. PubMed DOI PMC

Azzalin  CM, Lingner  J.  Telomeres: the silence is broken. Cell Cycle. 2008; 7:1161–5.10.4161/cc.7.9.5836. PubMed DOI

Xu  Y, Kaminaga  K, Komiyama  M.  G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J Am Chem Soc. 2008; 130:11179–84.10.1021/ja8031532. PubMed DOI

Hagihara  M, Yamauchi  L, Seo  A  et al. .  Antisense-induced guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J Am Chem Soc. 2010; 132:11171–8.10.1021/ja1032088. PubMed DOI

Guo  X, Chen  L.  From G1 to M: a comparative study of methods for identifying cell cycle phases. Brief Bioinform. 2024; 25:bbad517.10.1093/bib/bbad517. PubMed DOI PMC

He  Z, He  J, Xie  K.  KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023; 9:118.10.1038/s41420-023-01416-y. PubMed DOI PMC

Wang  H, Xu  H, Lyu  W  et al. .  KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis. 2022; 13:435.10.1038/s41419-022-04886-7. PubMed DOI PMC

Guerrero-Martínez  JA, Ceballos-Chávez  M, Koehler  F  et al. .  TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun. 2020; 11:6196.10.1038/s41467-020-19877-5. PubMed DOI PMC

Hill  CS.  Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol. 2016; 8:a022079.10.1101/cshperspect.a022079. PubMed DOI PMC

Odegard  VH, Schatz  DG.  Targeting of somatic hypermutation. Nat Rev Immunol. 2006; 6:573–83.10.1038/nri1896. PubMed DOI

Wang  Q, Kieffer-Kwon  K-R, Oliveira  TY  et al. .  The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med. 2017; 214:49–58.10.1084/jem.20161649. PubMed DOI PMC

De Silva  NS, Klein  U.  Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015; 15:137–48.10.1038/nri3804. PubMed DOI PMC

Walker  MP, Stopford  CM, Cederlund  M  et al. .  FOXP1 potentiates wnt/β-catenin signaling in diffuse large B-cell lymphoma. Sci Signal. 2015; 8:ra12.10.1126/scisignal.2005654. PubMed DOI PMC

Nguyen  MT, Lee  W.  Kank1 Is essential for myogenic differentiation by regulating actin remodeling and cell proliferation in C2C12 progenitor cells. Cells. 2022; 11:2030.https://doi.org/10.3390/cells11132030. PubMed PMC

Greifenberg  AK, Hönig  D, Pilarova  K  et al. .  Structural and functional analysis of the Cdk13/cyclin K complex. Cell Rep. 2016; 14:320–31.10.1016/j.celrep.2015.12.025. PubMed DOI

Orrù  V, Steri  M, Sidore  C  et al. .  Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020; 52:1036–45.10.1038/s41588-020-0684-4. PubMed DOI PMC

Chen  M-H, Raffield  LM, Mousas  A  et al. .  Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020; 182:1198–1213.e14.e1410.1016/j.cell.2020.06.045. PubMed DOI PMC

Vuckovic  D, Bao  EL, Akbari  P  et al. .  The polygenic and monogenic basis of blood traits and diseases. Cell. 2020; 182:1214–1231.10.1016/j.cell.2020.08.008. PubMed DOI PMC

Blazek  D, Kohoutek  J, Bartholomeeusen  K  et al. .  The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011; 25:2158–72.10.1101/gad.16962311. PubMed DOI PMC

Riethman  H.  Human subtelomeric copy number variations. Cytogenet Genome Res. 2008; 123:244–52.10.1159/000184714. PubMed DOI PMC

Robin  JD, Ludlow  AT, Batten  K  et al. .  Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014; 28:2464–76.10.1101/gad.251041.114. PubMed DOI PMC

Glass  D, Viñuela  A, Davies  MN  et al. .  Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013; 14:R75.10.1186/gb-2013-14-7-r75. PubMed DOI PMC

Zhang  H, Emerson  DJ, Gilgenast  TG  et al. .  Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature. 2019; 576:158–62.10.1038/s41586-019-1778-y. PubMed DOI PMC

Ludwig  LS, Lareau  CA, Ulirsch  JC  et al. .  Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019; 176:1325–1339.10.1016/j.cell.2019.01.022. PubMed DOI PMC

Mihai  IS, Selinger  M, Boucheron  N  et al. .  The CD4 T cell epigenetic JUNB+ state is associated with proliferation and exhaustion. bioRxiv5 January 2024, preprint: not peer reviewed10.1101/2024.01.05.573875. DOI

De Rop  FV, Hulselmans  G, Flerin  C  et al. .  Systematic benchmarking of single-cell ATAC-sequencing protocols. Nat Biotechnol. 2024; 42:916–26.10.1038/s41587-023-01881-x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...