Telomemore enables single-cell analysis of cell cycle and chromatin condensation
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
Swedish National Infrastructure for Computing (SNIC)
2018-05973
Swedish Research Council
2021-06602
Vetenskapsrådet
233102
Swedish Cancer Society
JCK-0055
Kempestiftelserna
KAW 2020.0239
SciLifeLab & Wallenberg Data Driven Life Science Program
Swedish Bibsam Consortium
PubMed
39878215
PubMed Central
PMC11775621
DOI
10.1093/nar/gkaf031
PII: 7986050
Knihovny.cz E-resources
- MeSH
- Single-Cell Analysis * methods MeSH
- B-Lymphocytes metabolism MeSH
- Cell Cycle * genetics MeSH
- Chromatin Immunoprecipitation Sequencing methods MeSH
- Chromatin * genetics metabolism MeSH
- Fibroblasts metabolism MeSH
- Humans MeSH
- RNA-Seq methods MeSH
- Telomere genetics MeSH
- Binding Sites MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Chromatin * MeSH
Single-cell RNA-seq methods can be used to delineate cell types and states at unprecedented resolution but do little to explain why certain genes are expressed. Single-cell ATAC-seq and multiome (ATAC + RNA) have emerged to give a complementary view of the cell state. It is however unclear what additional information can be extracted from ATAC-seq data besides transcription factor binding sites. Here, we show that ATAC-seq telomere-like reads counter-inituively cannot be used to infer telomere length, as they mostly originate from the subtelomere, but can be used as a biomarker for chromatin condensation. Using long-read sequencing, we further show that modern hyperactive Tn5 does not duplicate 9 bp of its target sequence, contrary to common belief. We provide a new tool, Telomemore, which can quantify nonaligning subtelomeric reads. By analyzing several public datasets and generating new multiome fibroblast and B-cell atlases, we show how this new readout can aid single-cell data interpretation. We show how drivers of condensation processes can be inferred, and how it complements common RNA-seq-based cell cycle inference, which fails for monocytes. Telomemore-based analysis of the condensation state is thus a valuable complement to the single-cell analysis toolbox.
Department of Chemistry Umeå University Linnaeus väg 10 Umeå universitet 901 87 Umeå Sweden
Industrial Doctoral School Umeå University Umeå Sweden
Integrated Science Lab Umeå University Naturvetarhuset Universitetsvägen 901 87 Umeå Sweden
Sartorius Corporate Research Östra Strandgatan 24 903 33 Umeå Sweden
Umeå Centre for Microbial Research Universitetstorget 4 901 87 Umeå Sweden
See more in PubMed
Allsopp RC, Vaziri H, Patterson C et al. . Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA. 1992; 89:10114–8.10.1073/pnas.89.21.10114. PubMed DOI PMC
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol. 2021; 22:283–98.10.1038/s41580-021-00328-y. PubMed DOI PMC
Savage SA. Beginning at the ends: telomeres and human disease. F1000Res. 2018; 7:524.10.12688/f1000research.14068.1. PubMed DOI PMC
Heaphy CM, Meeker AK. The potential utility of telomere-related markers for cancer diagnosis. J Cell Mol Med. 2011; 15:1227–38.10.1111/j.1582-4934.2011.01284.x. PubMed DOI PMC
Tham C-Y, Poon L, Yan T et al. . High-throughput telomere length measurement at nucleotide resolution using the PacBio high fidelity sequencing platform. Nat Commun. 2023; 14:281.10.1038/s41467-023-35823-7. PubMed DOI PMC
Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017; 18:175–86.10.1038/nrm.2016.171. PubMed DOI PMC
Wang H, Gong P, Chen T et al. . Colorectal cancer stem cell states uncovered by simultaneous single-cell analysis of transcriptome and telomeres. Adv Sci. 2021; 8:2004320.10.1002/advs.202004320. PubMed DOI PMC
Buenrostro JD, Giresi PG, Zaba LC et al. . Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013; 10:1213–8.10.1038/nmeth.2688. PubMed DOI PMC
Schep AN, Wu B, Buenrostro JD et al. . chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat Methods. 2017; 14:975–8.10.1038/nmeth.4401. PubMed DOI PMC
Delacher M, Simon M, Sanderink L et al. . Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity. 2021; 54:702–720.10.1016/j.immuni.2021.03.007. PubMed DOI PMC
Hao Y, Hao S, Andersen-Nissen E et al. . Integrated analysis of multimodal single-cell data. Cell. 2021; 184:3573–3587.10.1016/j.cell.2021.04.048. PubMed DOI PMC
Lyu P, Hoang T, Santiago CP et al. . Gene regulatory networks controlling temporal patterning, neurogenesis, and cell-fate specification in mammalian retina. Cell Rep. 2021; 37:109994.10.1016/j.celrep.2021.109994. PubMed DOI PMC
Morabito S, Miyoshi E, Michael N et al. . Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat Genet. 2021; 53:1143–55.10.1038/s41588-021-00894-z. PubMed DOI PMC
Sarropoulos I, Sepp M, Frömel R et al. . Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science. 2021; 373:eabg4696.10.1126/science.abg4696. PubMed DOI PMC
Satpathy AT, Granja JM, Yost KE et al. . Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat Biotechnol. 2019; 37:925–36.10.1038/s41587-019-0206-z. PubMed DOI PMC
Taavitsainen S, Engedal N, Cao S et al. . Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse. Nat Commun. 2021; 12:5307.10.1038/s41467-021-25624-1. PubMed DOI PMC
Wimmers F, Donato M, Kuo A et al. . The single-cell epigenomic and transcriptional landscape of immunity to influenza vaccination. Cell. 2021; 184:3915–3935.10.1016/j.cell.2021.05.039. PubMed DOI PMC
Ziffra RS, Kim CN, Ross JM et al. . Single-cell epigenomics reveals mechanisms of human cortical development. Nature. 2021; 598:205–13.10.1038/s41586-021-03209-8. PubMed DOI PMC
Kinoshita M, Barber M, Mansfield W et al. . Capture of mouse and human stem cells with features of formative pluripotency. Cell Stem Cell. 2021; 28:453–471.10.1016/j.stem.2020.11.005. PubMed DOI PMC
Li Q, Huang Y, Xu J et al. . p53 inactivation unmasks histone methylation-independent WDR5 functions that drive self-renewal and differentiation of pluripotent stem cells. Stem Cell Rep. 2021; 16:2642–58.10.1016/j.stemcr.2021.10.002. PubMed DOI PMC
Zhang K, Hocker JD, Miller M et al. . A single-cell atlas of chromatin accessibility in the human genome. Cell. 2021; 184:5985–6001.10.1016/j.cell.2021.10.024. PubMed DOI PMC
Argelaguet R, Lohoff T, Li JG et al. . Decoding gene regulation in the mouse embryo using single-cell multi-omics. bioRxiv15 June 2022, preprint: not peer reviewed10.1101/2022.06.15.496239. DOI
Lopez Chiloeches M, Bergonzini A, Martin OCB et al. . Genotoxin-producing Salmonella enterica induces tissue-specific types of DNA damage and DNA damage response outcomes. Front Immunol. 2023; 14:1270449.10.3389/fimmu.2023.1270449. PubMed DOI PMC
Ding Z, Mangino M, Aviv A et al. . Estimating telomere length from whole genome sequence data. Nucleic Acids Res. 2014; 42:e75.10.1093/nar/gku181. PubMed DOI PMC
Márquez EJ, Chung C-H, Marches R et al. . Sexual-dimorphism in human immune system aging. Nat Commun. 2020; 11:751.10.1038/s41467-020-14396-9. PubMed DOI PMC
Feuerbach L, Sieverling L, Deeg KI et al. . TelomereHunter—in silico estimation of telomere content and composition from cancer genomes. BMC Bioinf. 2019; 20:272.10.1186/s12859-019-2851-0. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26:841–2.10.1093/bioinformatics/btq033. PubMed DOI PMC
Karimian K, Groot A, Huso V et al. . Human telomere length is chromosome end-specific and conserved across individuals. Science. 2024; 384:533–9.10.1126/science.ado0431. PubMed DOI
Karimian K, Groot A, Huso V et al.. Telomere dataset used for calculating bulk and chromosome specific telomere length. Dryad. 2024; 10.5061/dryad.dz08kps5d. DOI
Cock PJA, Antao T, Chang JT et al. . Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25:1422–3.10.1093/bioinformatics/btp163. PubMed DOI PMC
Corces MR, Granja JM, Shams S et al. . The chromatin accessibility landscape of primary human cancers. Science. 2018; 362:eaav1898.10.1126/science.aav1898. PubMed DOI PMC
Barthel FP, Wei W, Tang M et al. . Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet. 2017; 49:349–57.10.1038/ng.3781. PubMed DOI PMC
Reznikoff WS. Tn5 as a model for understanding DNA transposition. Mol Microbiol. 2003; 47:1199–206.10.1046/j.1365-2958.2003.03382.x. PubMed DOI
Goryshin IY, Kil YV, Reznikoff WS. DNA length, bending, and twisting constraints on IS50 transposition. Proc Natl Acad Sci USA. 1994; 91:10834–8. PubMed PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–15.10.1093/nar/gkg595. PubMed DOI PMC
Hennig BP, Velten L, Racke I et al. . Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3. 2018; 8:79–89.10.1534/g3.117.300257. PubMed DOI PMC
Grandi FC, Modi H, Kampman L et al. . Chromatin accessibility profiling by ATAC-seq. Nat Protoc. 2022; 17:1518–52.10.1038/s41596-022-00692-9. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–100.10.1093/bioinformatics/bty191. PubMed DOI PMC
Ramírez F, Ryan DP, Grüning B et al. . deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016; 44:W160–5.10.1093/nar/gkw257. PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W et al. . Integrative genomics viewer. Nat Biotechnol. 2011; 29:24–6.10.1038/nbt.1754. PubMed DOI PMC
Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017; 33:3645–7.10.1093/bioinformatics/btx469. PubMed DOI
Watson JV, Chambers SH, Smith PJ. A pragmatic approach to the analysis of DNA histograms with a definable G1 peak. Cytometry. 1987; 8:1–8.10.1002/cyto.990080101. PubMed DOI
Stuart T, Srivastava A, Madad S et al. . Single-cell chromatin state analysis with Signac. Nat Methods. 2021; 18:1333–41.10.1038/s41592-021-01282-5. PubMed DOI PMC
Zhang Y, Liu T, Meyer CA et al. . Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9:R137.10.1186/gb-2008-9-9-r137. PubMed DOI PMC
McInnes L, Healy J, Melville J. UMAP: uniform manifold approximation and projection for dimension reduction. arXiv9 February 2018, preprint: not peer reviewedhttps://arxiv.org/abs/1802.03426.
Aran D, Looney AP, Liu L et al. . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019; 20:163–72.10.1038/s41590-018-0276-y. PubMed DOI PMC
Schmiedel BJ, Singh D, Madrigal A et al. . Impact of genetic polymorphisms on human immune cell gene expression. Cell. 2018; 175:1701–1715.10.1016/j.cell.2018.10.022. PubMed DOI PMC
Mabbott NA, Baillie JK, Brown H et al. . An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics. 2013; 14:632.10.1186/1471-2164-14-632. PubMed DOI PMC
Monaco G, Lee B, Xu W et al. . RNA-seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 2019; 26:1627–1640.10.1016/j.celrep.2019.01.041. PubMed DOI PMC
Chiou J, Zeng C, Cheng Z et al. . Single-cell chromatin accessibility identifies pancreatic islet cell type- and state-specific regulatory programs of diabetes risk. Nat Genet. 2021; 53:455–66.10.1038/s41588-021-00823-0. PubMed DOI PMC
Ritchie ME, Phipson B, Wu D et al. . limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43:e47.10.1093/nar/gkv007. PubMed DOI PMC
Weirauch MT, Yang A, Albu M et al. . Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014; 158:1431–43.10.1016/j.cell.2014.08.009. PubMed DOI PMC
Song L, Cohen D, Ouyang Z et al. . TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat Methods. 2021; 18:627–30.10.1038/s41592-021-01142-2. PubMed DOI PMC
Huang X, Huang Y. Cellsnp-lite: an efficient tool for genotyping single cells. Bioinformatics. 2021; 37:4569–71.10.1093/bioinformatics/btab358. PubMed DOI
Huang Y, McCarthy DJ, Stegle O. Vireo: bayesian demultiplexing of pooled single-cell RNA-seq data without genotype reference. Genome Biol. 2019; 20:4569–71.10.1186/s13059-019-1865-2. PubMed DOI PMC
King HW, Orban N, Riches JC et al. . Single-cell analysis of human B cell maturation predicts how antibody class switching shapes selection dynamics. Sci Immunol. 2021; 6:eabe6291.10.1126/sciimmunol.abe6291. PubMed DOI
Weng NP, Granger L, Hodes RJ. Telomere lengthening and telomerase activation during human B cell differentiation. Proc Natl Acad Sci USA. 1997; 94:10827–32.10.1073/pnas.94.20.10827. PubMed DOI PMC
Weng NP, Levine BL, June CH et al. . Human naive and memory T lymphocytes differ in telomeric length and replicative potential. Proc Natl Acad Sci USA. 1995; 92:11091–4.10.1073/pnas.92.24.11091. PubMed DOI PMC
Farmery JHR, Smith MLNIHR BioResource - Rare Diseases NIHR BioResource - Rare Diseases Lynch AG. Telomerecat: a ploidy-agnostic method for estimating telomere length from whole genome sequencing data. Sci Rep. 2018; 8:1300.10.1038/s41598-017-14403-y. PubMed DOI PMC
Derevyanko A, Whittemore K, Schneider RP et al. . Gene therapy with the TRF1 telomere gene rescues decreased TRF1 levels with aging and prolongs mouse health span. Aging Cell. 2017; 16:1353–68.10.1111/acel.12677. PubMed DOI PMC
Johnson VL, Cooper IR, Jenkins JR et al. . Effects of differential overexpression of Bcl-2 on apoptosis, proliferation, and telomerase activity in Jurkat T cells. Exp Cell Res. 1999; 251:175–84.10.1006/excr.1999.4557. PubMed DOI
Berg DE, Schmandt MA, Lowe JB. Specificity of transposon Tn5 insertion. Genetics. 1983; 105:813–28.10.1093/genetics/105.4.813. PubMed DOI PMC
Hesselberth JR, Chen X, Zhang Z et al. . Global mapping of protein–DNA interactions in vivo by digital genomic footprinting. Nat Methods. 2009; 6:283–9.10.1038/nmeth.1313. PubMed DOI PMC
Varshney D, Spiegel J, Zyner K et al. . The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020; 21:459–74.10.1038/s41580-020-0236-x. PubMed DOI PMC
Green B, Bouchier C, Fairhead C et al. . Insertion site preference of mu, Tn5, and Tn7 transposons. Mobile DNA. 2012; 3:3.10.1186/1759-8753-3-3. PubMed DOI PMC
Schaller H. The intergenic region and the origins for filamentous phage DNA replication. Cold Spring Harbor Symp Quant Biol. 1979; 43:401–8.10.1101/SQB.1979.043.01.046. PubMed DOI
Granja JM, Corces MR, Pierce SE et al. . ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021; 53:3403–11.10.1038/s41588-021-00790-6. PubMed DOI PMC
Deniz Ö, Flores O, Aldea M et al. . Nucleosome architecture throughout the cell cycle. Sci Rep. 2016; 6:19729.10.1038/srep19729. PubMed DOI PMC
Chen X, Shen Y, Draper W et al. . ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nat Methods. 2016; 13:1013–20.10.1038/nmeth.4031. PubMed DOI PMC
Ondov BD, Treangen TJ, Melsted P et al. . Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016; 17:132.10.1186/s13059-016-0997-x. PubMed DOI PMC
Rawlings JS, Gatzka M, Thomas PG et al. . Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J. 2011; 30:263–76.10.1038/emboj.2010.314. PubMed DOI PMC
Maestroni L, Matmati S, Coulon S. Solving the telomere replication problem. Genes. 2017; 8:55.10.3390/genes8020055. PubMed DOI PMC
Tedesco M, Giannese F, Lazarević D et al. . Chromatin velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat Biotechnol. 2022; 40:235–44.10.1038/s41587-021-01031-1. PubMed DOI
Cros J, Cagnard N, Woollard K et al. . Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010; 33:375–86.10.1016/j.immuni.2010.08.012. PubMed DOI PMC
Eggermann T, Binder G, Brioude F et al. . CDKN1C mutations: two sides of the same coin. Trends Mol Med. 2014; 20:614–22.10.1016/j.molmed.2014.09.001. PubMed DOI
Rivosecchi J, Cusanelli E. TERRA beyond cancer: the biology of telomeric repeat-containing RNAs in somatic and germ cells. Front Aging. 2023; 4:1224225.10.3389/fragi.2023.1224225. PubMed DOI PMC
Porro A, Feuerhahn S, Reichenbach P et al. . Molecular dissection of telomeric repeat-containing RNA biogenesis unveils the presence of distinct and multiple regulatory pathways. Mol Cell Biol. 2010; 30:4808–17.10.1128/MCB.00460-10. PubMed DOI PMC
Azzalin CM, Lingner J. Telomeres: the silence is broken. Cell Cycle. 2008; 7:1161–5.10.4161/cc.7.9.5836. PubMed DOI
Xu Y, Kaminaga K, Komiyama M. G-quadruplex formation by human telomeric repeats-containing RNA in Na+ solution. J Am Chem Soc. 2008; 130:11179–84.10.1021/ja8031532. PubMed DOI
Hagihara M, Yamauchi L, Seo A et al. . Antisense-induced guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J Am Chem Soc. 2010; 132:11171–8.10.1021/ja1032088. PubMed DOI
Guo X, Chen L. From G1 to M: a comparative study of methods for identifying cell cycle phases. Brief Bioinform. 2024; 25:bbad517.10.1093/bib/bbad517. PubMed DOI PMC
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023; 9:118.10.1038/s41420-023-01416-y. PubMed DOI PMC
Wang H, Xu H, Lyu W et al. . KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis. 2022; 13:435.10.1038/s41419-022-04886-7. PubMed DOI PMC
Guerrero-Martínez JA, Ceballos-Chávez M, Koehler F et al. . TGFβ promotes widespread enhancer chromatin opening and operates on genomic regulatory domains. Nat Commun. 2020; 11:6196.10.1038/s41467-020-19877-5. PubMed DOI PMC
Hill CS. Transcriptional control by the SMADs. Cold Spring Harb Perspect Biol. 2016; 8:a022079.10.1101/cshperspect.a022079. PubMed DOI PMC
Odegard VH, Schatz DG. Targeting of somatic hypermutation. Nat Rev Immunol. 2006; 6:573–83.10.1038/nri1896. PubMed DOI
Wang Q, Kieffer-Kwon K-R, Oliveira TY et al. . The cell cycle restricts activation-induced cytidine deaminase activity to early G1. J Exp Med. 2017; 214:49–58.10.1084/jem.20161649. PubMed DOI PMC
De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015; 15:137–48.10.1038/nri3804. PubMed DOI PMC
Walker MP, Stopford CM, Cederlund M et al. . FOXP1 potentiates wnt/β-catenin signaling in diffuse large B-cell lymphoma. Sci Signal. 2015; 8:ra12.10.1126/scisignal.2005654. PubMed DOI PMC
Nguyen MT, Lee W. Kank1 Is essential for myogenic differentiation by regulating actin remodeling and cell proliferation in C2C12 progenitor cells. Cells. 2022; 11:2030.https://doi.org/10.3390/cells11132030. PubMed PMC
Greifenberg AK, Hönig D, Pilarova K et al. . Structural and functional analysis of the Cdk13/cyclin K complex. Cell Rep. 2016; 14:320–31.10.1016/j.celrep.2015.12.025. PubMed DOI
Orrù V, Steri M, Sidore C et al. . Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet. 2020; 52:1036–45.10.1038/s41588-020-0684-4. PubMed DOI PMC
Chen M-H, Raffield LM, Mousas A et al. . Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell. 2020; 182:1198–1213.e14.e1410.1016/j.cell.2020.06.045. PubMed DOI PMC
Vuckovic D, Bao EL, Akbari P et al. . The polygenic and monogenic basis of blood traits and diseases. Cell. 2020; 182:1214–1231.10.1016/j.cell.2020.08.008. PubMed DOI PMC
Blazek D, Kohoutek J, Bartholomeeusen K et al. . The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011; 25:2158–72.10.1101/gad.16962311. PubMed DOI PMC
Riethman H. Human subtelomeric copy number variations. Cytogenet Genome Res. 2008; 123:244–52.10.1159/000184714. PubMed DOI PMC
Robin JD, Ludlow AT, Batten K et al. . Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014; 28:2464–76.10.1101/gad.251041.114. PubMed DOI PMC
Glass D, Viñuela A, Davies MN et al. . Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol. 2013; 14:R75.10.1186/gb-2013-14-7-r75. PubMed DOI PMC
Zhang H, Emerson DJ, Gilgenast TG et al. . Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature. 2019; 576:158–62.10.1038/s41586-019-1778-y. PubMed DOI PMC
Ludwig LS, Lareau CA, Ulirsch JC et al. . Lineage tracing in humans enabled by mitochondrial mutations and single-cell genomics. Cell. 2019; 176:1325–1339.10.1016/j.cell.2019.01.022. PubMed DOI PMC
Mihai IS, Selinger M, Boucheron N et al. . The CD4 T cell epigenetic JUNB+ state is associated with proliferation and exhaustion. bioRxiv5 January 2024, preprint: not peer reviewed10.1101/2024.01.05.573875. DOI
De Rop FV, Hulselmans G, Flerin C et al. . Systematic benchmarking of single-cell ATAC-sequencing protocols. Nat Biotechnol. 2024; 42:916–26.10.1038/s41587-023-01881-x. PubMed DOI PMC