Apolipoprotein E3 and E4 isoforms exhibit differing effects in countering endotoxins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39880097
PubMed Central
PMC11879696
DOI
10.1016/j.jbc.2025.108236
PII: S0021-9258(25)00083-3
Knihovny.cz E-zdroje
- Klíčová slova
- antimicrobial peptides, apolipoprotein E isoforms, endotoxin, host defense, protein aggregation,
- MeSH
- apolipoprotein E3 * metabolismus chemie farmakologie MeSH
- apolipoprotein E4 * metabolismus chemie farmakologie MeSH
- Escherichia coli metabolismus MeSH
- lidé MeSH
- lipopolysacharidy * metabolismus chemie MeSH
- myši MeSH
- protein - isoformy chemie metabolismus MeSH
- Pseudomonas aeruginosa metabolismus MeSH
- simulace molekulární dynamiky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- apolipoprotein E3 * MeSH
- apolipoprotein E4 * MeSH
- lipopolysacharidy * MeSH
- protein - isoformy MeSH
Apolipoprotein E (APOE) is distributed across various human tissues and plays a crucial role in lipid metabolism. Recent investigations have uncovered an additional facet of APOE's functionality, revealing its role in host defense against bacterial infections. To assess the antibacterial attributes of APOE3 and APOE4, we conducted antibacterial assays using Pseudomonas aeruginosa and Escherichia coli. Exploring the interaction between APOE isoforms and lipopolysaccharides (LPSs) from E. coli, we conducted several experiments, including gel shift assays, CD, and fluorescence spectroscopy. Furthermore, the interaction between APOE isoforms and LPS was further substantiated through atomic resolution molecular dynamics simulations. The presence of LPS induced the aggregation of APOE isoforms, a phenomenon confirmed through specific amyloid staining, as well as fluorescence and electron microscopy. The scavenging effects of APOE3/4 isoforms were studied through both in vitro and in vivo experiments. In summary, our study established that APOE isoforms exhibit binding to LPS, with a more pronounced affinity and complex formation observed for APOE4 compared with APOE3. Furthermore, our data suggest that APOE isoforms neutralize LPS through aggregation, leading to a reduction of local inflammation in experimental animal models. In addition, both isoforms demonstrated inhibitory effects on the growth of P. aeruginosa and E. coli. These findings provide new insights into the multifunctionality of APOE in the human body, particularly its role in innate immunity during bacterial infections.
Bioinformatics Institute Singapore Republic of Singapore
Department of Biomedical Science Faculty of Health and Society Malmö University Malmö Sweden
Division of Dermatology and Venereology Department of Clinical Sciences Lund University Lund Sweden
Zobrazit více v PubMed
Petrlova J., Hong H.S., Bricarello D.A., Harishchandra G., Lorigan G.A., Jin L.W., et al. A differential association of Apolipoprotein E isoforms with the amyloid-β oligomer in solution. Proteins. 2011;79:402–416. PubMed PMC
Phillips M.C. Apolipoprotein E isoforms and lipoprotein metabolism. IUBMB Life. 2014;66:616–623. PubMed
White C.R., Garber D.W., Anantharamaiah G.M. Anti-inflammatory and cholesterol-reducing properties of apolipoprotein mimetics: a review. J. Lipid Res. 2014;55:2007–2021. PubMed PMC
Azuma M., Kojimab T., Yokoyama I., Tajiri H., Yoshikawa K., Saga S., et al. A synthetic peptide of human apoprotein E with antibacterial activity. Peptides. 2000;21:327–330. PubMed
Croy J.E., Brandon T., Komives E.A. Two apolipoprotein E mimetic peptides, ApoE(130-149) and ApoE(141-155)2, bind to LRP1. Biochemistry. 2004;43:7328–7335. PubMed
Petruk G., Elven M., Hartman E., Davoudi M., Schmidtchen A., Puthia M., et al. The role of full-length apoE in clearance of Gram-negative bacteria and their endotoxins. J. Lipid Res. 2021;62 PubMed PMC
Puthia M., Marzinek J.K., Petruk G., Erturk Bergdahl G., Bond P.J., Petrlova J. Antibacterial and anti-inflammatory effects of apolipoprotein E. Biomedicines. 2022;10 PubMed PMC
Munford R.S. Sensing gram-negative bacterial lipopolysaccharides: a human disease determinant? Infect. Immun. 2008;76:454–465. PubMed PMC
Pop-Vicas A., Opal S.M. The clinical impact of multidrug-resistant gram-negative bacilli in the management of septic shock. Virulence. 2014;5:206–212. PubMed PMC
Kaneva A.M., Bojko E.R., Potolitsyna N.N., Odland J.O. Plasma levels of apolipoprotein-E in residents of the European North of Russia. Lipids Health Dis. 2013;12:43. PubMed PMC
Neshani A., Zare H., Eidgahi M.R.A., Kakhki R.K., Safdari H., Khaledi A., et al. LL-37: review of antimicrobial profile against sensitive and antibiotic-resistant human bacterial pathogens. Gene Rep. 2019;17
Suzuki K., Murakami T., Hu Z., Tamura H., Kuwahara-Arai K., Iba T., et al. Human host defense cathelicidin peptide LL-37 enhances the lipopolysaccharide uptake by liver sinusoidal endothelial cells without cell activation. J. Immunol. 2016;196:1338–1347. PubMed
Scott M.G., Davidson D.J., Gold M.R., Bowdish D., Hancock R.E.W. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J. Immunol. 2002;169:3883–3891. PubMed
Petrlova J., Hartman E., Petruk G., Lim J.C.H., Adav S.S., Kjellstrom S., et al. Selective protein aggregation confines and inhibits endotoxins in wounds: linking host defense to amyloid formation. iScience. 2023;26 PubMed PMC
Forbes S., McBain A.J., Felton-Smith S., Jowitt T.A., Birchenough H.L., Dobson C.B. Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials. 2013;34:5453–5464. PubMed
Wang C.Q., Yang C.S., Yang Y., Pan F., He L.Y., Wang A.M. An apolipoprotein E mimetic peptide with activities against multidrug-resistant bacteria and immunomodulatory effects. J. Pept. Sci. 2013;19:745–750. PubMed
Zhan X., Stamova B., Sharp F.R. Lipopolysaccharide associates with amyloid plaques, neurons and oligodendrocytes in Alzheimer's disease brain: a review. Front. Aging Neurosci. 2018;10:42. PubMed PMC
Cedazo-Minguez A., Cowburn R.F. Apolipoprotein E: a major piece in the Alzheimer's disease puzzle. J. Cell Mol. Med. 2001;5:254–266. PubMed PMC
Jansen W.J., Ossenkoppele R., Knol D.L., Tijms B.M., Scheltens P., Verhey F.R.J., et al. Prevalence of cerebral amyloid pathology in persons without dementia A meta-analysis. JAMA. 2015;313:1924–1938. PubMed PMC
Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., et al. Porphyromonas gingivalis in Alzheimer's disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv. 2019;5:eaau3333. PubMed PMC
Brown G.C. The endotoxin hypothesis of neurodegeneration. J. Neuroinflammation. 2019;16:180. PubMed PMC
Corbo R.M., Scacchi R. Apolipoprotein E (APOE) allele distribution in the world. Is APOE∗4 a 'thrifty' allele? Ann. Hum. Genet. 1999;63:301–310. PubMed
Chen Y.C., Yip P.K., Huang Y.L., Sun Y., Wen L.L., Chu Y.M., et al. Sequence variants of toll like receptor 4 and late-onset Alzheimer's disease. PLoS One. 2012;7 PubMed PMC
Rensen P.C., Oosten M., Bilt E., Eck M., Kuiper J., Berkel T.J. Human recombinant apolipoprotein E redirects lipopolysaccharide from Kupffer cells to liver parenchymal cells in rats in vivo. J. Clin. Invest. 1997;99:2438–2445. PubMed PMC
Harris F., Dennison S.R., Phoenix D.A. Aberrant action of amyloidogenic host defense peptides: a new paradigm to investigate neurodegenerative disorders? FASEB J. 2012;26:1776–1781. PubMed
Kumar D.K., Choi S.H., Washicosky K.J., Eimer W.A., Tucker S., Ghofrani J., et al. Amyloid-beta peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci. Transl. Med. 2016;8 PubMed PMC
Lee E.Y., Srinivasan Y., de Anda J., Nicastro L.K., Tukel C., Wong G.C.L. Functional reciprocity of amyloids and antimicrobial peptides: rethinking the role of supramolecular assembly in host defense, immune activation, and inflammation. Front. Immunol. 2020;11:1629. PubMed PMC
Pasupuleti M., Roupe M., Rydengard V., Surewicz K., Surewicz W.K., Chalupka A., et al. Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One. 2009;4 PubMed PMC
Soscia S.J., Kirby J.E., Washicosky K.J., Tucker S.M., Ingelsson M., Hyman B., et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5 PubMed PMC
Trumble B.C., Stieglitz J., Blackwell A.D., Allayee H., Beheim B., Finch C.E., et al. Apolipoprotein E4 is associated with improved cognitive function in Amazonian forager-horticulturalists with a high parasite burden. FASEB J. 2017;31:1508–1515. PubMed PMC
van Exel E., Koopman J.J.E., Bodegom D.V., Meij J.J., Knijff P., Ziem J.B., et al. Effect of APOE epsilon4 allele on survival and fertility in an adverse environment. PLoS One. 2017;12 PubMed PMC
Mueller T., Fischer J., Gessner R., Rosendahl J., Bohm S., van Bommel F., et al. Apolipoprotein E allele frequencies in chronic and self-limited hepatitis C suggest a protective effect of APOE4 in the course of hepatitis C virus infection. Liver Int. 2016;36:1267–1274. PubMed
Wozniak M.A., Itzhaki R.F., Faragher E.B., James M.W., Ryder S.D., Irving W.L., et al. Apolipoprotein E-epsilon 4 protects against severe liver disease caused by hepatitis C virus. Hepatology. 2002;36:456–463. PubMed
Eimer W.A., Vijaya Kumar D.K., Navalpur Shanmugam N.K., Rodriguez A.S., Mitchell T., Washicosky K.J., et al. Alzheimer's disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron. 2018;100:1527–1532. PubMed
Tally F.P., DeBruin M.F. Development of daptomycin for gram-positive infections. J. Antimicrob. Chemother. 2000;46:523–526. PubMed
Dijksteel G.S., Ulrich M.M.W., Middelkoop E., Boekema B. Review: lessons learned from clinical trials using antimicrobial peptides (AMPs) Front. Microbiol. 2021;12 PubMed PMC
Deshayes C., Arafath M.N., Apaire-Marchais V., Roger E. Drug delivery systems for the oral administration of antimicrobial peptides: promising tools to treat infectious diseases. Front. Med. Technol. 2021;3 PubMed PMC
Gan B.H., Gaynord J., Rowe S.M., Deingruber T., Spring D.R. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021;50:7820–7880. PubMed PMC
Saeidnia S., Manayi A., Abdollahi M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr. Drug Discov. Technol. 2015;12:218–224. PubMed
Gudmundsson G.H., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur. J. Biochem. 1996;238:325–332. PubMed
Petrlova J., Petruk G., Huber R.G., McBurnie E.W., van der Plas M.J.A., Bond P.J., et al. Thrombin-derived C-terminal fragments aggregate and scavenge bacteria and their proinflammatory products. J. Biol. Chem. 2020;295:3417–3430. PubMed PMC
Chen J., Li Q., Wang J. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc. Natl. Acad. Sci. U. S. A. 2011;108:14813–14818. PubMed PMC
Jo S., Kim T., Iyer V.G., Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–1865. PubMed
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017;14:71–73. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983;79:926–935.
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A.E., Berendsen H.J. GROMACS: fast, flexible, and free. J. Comput. Chem. 2005;26:1701–1718. PubMed
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593.
Parrinello M., Rahman A. Polymorphic transitions in single-crystals - a new molecular-dynamics method. J. Appl. Phys. 1981;52:7182–7190.
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:27–38. PubMed