A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnIn2Se4

. 2025 Mar 06 ; 13 (10) : 5356-5369. [epub] 20250115

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39896131

Due to their attractive band gap properties and van der Waals structure, 2D binary chalcogenide materials have been widely investigated in the last decade, finding applications in several fields such as catalysis, spintronics, and optoelectronics. Ternary 2D chalcogenide materials are a subject of growing interest in materials science due to their superior chemical tunability which endows tailored properties to the devices prepared thereof. In the family of AIIBIII 2XVI 4, ordered ZnIn2S4-like based photocatalytic systems have been studied meticulously. In contrast, reports on disordered phases appear to a minor extent. Herein, a photoelectrochemical (PEC) detector based on the pseudo-binary MnIn2Se4 system is presented. A combination of optical measurements and DFT calculations confirmed that the nature of the bandgap in MnIn2Se4 is indirect. Its performance outclasses that of parent compounds, reaching responsivity values of 8.41 mA W-1. The role of the non-centrosymmetric crystal structure is briefly discussed as a possible cause of improved charge separation of the photogenerated charge carriers.

Zobrazit více v PubMed

Li Y. Li Z. Chi C. Shan H. Zheng L. Fang Z. Adv. Sci. 2017;4:1600430. doi: 10.1002/advs.201600430. PubMed DOI PMC

Li Z. Hong E. Zhang X. Deng M. Fang X. Small. 2023;19:2206310. doi: 10.1002/smll.202206310. PubMed DOI

Fan X. Hong E. Wang P. Fang X. Adv. Mater. 2024;36:2400365. doi: 10.1002/adma.202400365. PubMed DOI

Li Z. Hong E. Zhang X. Deng M. Fang X. J. Phys. Chem. Lett. 2022;13:1215. doi: 10.1021/acs.jpclett.1c04225. PubMed DOI

Deng M. Li Z. Liu S. Fang X. Wu L. Nat. Commun. 2024;15:8789. doi: 10.1038/s41467-024-52840-2. PubMed DOI PMC

Choudhuri I. Bhaurival P. Pathak B. Chem. Mater. 2019;31:8260. doi: 10.1021/acs.chemmater.9b02243. DOI

Zhu Y. Peng L. Fang Z. Yan C. Zhang X. Yu G. Adv. Mater. 2018;30:1706347. doi: 10.1002/adma.201706347. PubMed DOI

Park J. Kim M. S. Cha E. Kim J. Choi W. Sci. Rep. 2017;7:16121. doi: 10.1038/s41598-017-16251-2. PubMed DOI PMC

Duong D. L. Yun S. J. Lee Y. H. ACS Nano. 2017;11:11803. doi: 10.1021/acsnano.7b07436. PubMed DOI

Perea-López N. Elías A. L. Barkdemir A. Castro-Beltrán A. Gutiérrez H. R. Feng S. Lv R. Hayashi T. López-Urías F. Ghosh S. Muchharla B. Talapatra S. Terrones H. Adv. Funct. Mater. 2013;23:5511. doi: 10.1002/adfm.201300760. DOI

Cong C. Shang J. Wang Y. Yu T. Adv. Opt. Mater. 2017;6:1700767. doi: 10.1002/adom.201700767. DOI

Li J. Han J. Li H. Fan X. Huang K. Mater. Sci. Semicond. Process. 2020;107:104804. doi: 10.1016/j.mssp.2019.104804. DOI

Huo N. Kang J. Wei Z. Li S.-S. Li J. Wei S.-H. Adv. Funct. Mater. 2014;24:7025. doi: 10.1002/adfm.201401504. DOI

Muller G. A. Cook J. B. Kim H.-S. Tolbert S. H. Dunn B. Nano Lett. 2015;15:1911. doi: 10.1021/nl504764m. PubMed DOI

Zhang Z. Ouyang Y. Cheng Y. Chen J. Li N. Zhang G. Phys. Rep. 2020;860:1. doi: 10.1016/j.physrep.2020.03.001. DOI

Bhattacharya D. Mukherjee S. Mitra R. K. Ray S. K. Nanotechnology. 2020;31:145701. doi: 10.1088/1361-6528/ab61ce. PubMed DOI

Singh M. Gaspera E. D. Ahmed T. Walia S. Ramanathan R. van Embden J. Mayes E. Bansal V. 2D Mater. 2017;4:025110. doi: 10.1088/2053-1583/aa6efc. DOI

Ciarrocchi A. Avsar A. Ovchinikov D. Kis A. Nat. Commun. 2018;9:919. doi: 10.1038/s41467-018-03436-0. PubMed DOI PMC

Lei S. Ge L. Liu Z. Najmaei S. Shi G. You G. Lou J. Vajtai R. Ajayan P. M. Nano Lett. 2013;13:2777–2781. doi: 10.1021/nl4010089. PubMed DOI

Yao J. D. Zheng Z. Q. Shao J. M. Yang G. W. Nanoscale. 2015;7:14974–14981. doi: 10.1039/C5NR03361F. PubMed DOI

Huang W. Gan L. Yang H. Zhou N. Wang R. Wu W. Li H. Ma Y. Zeng H. Zhai T. Adv. Funct. Mater. 2017;27:1702448. doi: 10.1002/adfm.201702448. DOI

Wang L. Hu P. Long Y. Liu Z. He X. J. Mater. Chem. A. 2017;5:22855. doi: 10.1039/C7TA06971E. DOI

Gao T. Zhang Q. Li L. Zhou X. Li L. Li H. Zhai T. Adv. Opt. Mater. 2018;6:1800058. doi: 10.1002/adom.201800058. DOI

Yu P. Lin J. Sun L. Le Q. L. Yu X. Gao G. Hsu C.-H. Wu D. Chang T.-R. Zeng Q. Li F. Wang Q. J. Jeng H.-T. Lin H. Trampert A. Shen Z. Suenaga K. Liu Z. Adv. Mater. 2017;29:1603991. doi: 10.1002/adma.201603991. PubMed DOI

Maeda T. Gong W. Wada T. Jpn. J. Appl. Phys. 2016;55:04ES15. doi: 10.7567/JJAP.55.04ES15. DOI

Kiran V. Mukherjee D. Jenjeti R. N. Sampath S. Nanoscale. 2014;6:12856. doi: 10.1039/C4NR03716B. PubMed DOI

Shi J. Cerqueira T. F. T. Cui W. Nogueira F. Botti S. Marques M. A. L. Sci. Rep. 2017;7:43179. doi: 10.1038/srep43179. PubMed DOI PMC

Pal K. Xia Y. Shen J. He J. Luo Y. Kanatzidis M. G. Wolverton C. npj Comput. Mater. 2021;7:82. doi: 10.1038/s41524-021-00549-x. DOI

Haeuseler H. J. Solid State Chem. 1979;29:121. doi: 10.1016/0022-4596(79)90216-0. DOI

Razzetti C. Lottici P. P. Antonioli G. Prog. Cryst. Growth Charact. 1987;15:43. doi: 10.1016/0146-3535(87)90009-8. DOI

Ranged K.-J. Z. Naturforsch. 1996;51b:1363. doi: 10.1515/znb-1996-0925. DOI

Lopez-Rivera S. A. Mora A. J. Acosta Najarro D. Rivera A. V. Avila Godoy R. Semicond. Sci. Technol. 2001;16:367. doi: 10.1088/0268-1242/16/5/315. DOI

Rincón C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:12716. doi: 10.1103/PhysRevB.45.12716. PubMed DOI

Gastaldi L. Maltese A. Viticoli S. J. Cryst. Growth. 1984;66:673. doi: 10.1016/0022-0248(84)90167-2. DOI

Döll G. Lux-Steiner M. C. Kloc C. Baumann J. R. Bucher E. J. Cryst. Growth. 1990;104:593. doi: 10.1016/0022-0248(90)90002-3. DOI

Ohtani T. Honjo H. Wada H. Mater. Res. Bull. 1987;22:829. doi: 10.1016/0025-5408(87)90038-9. DOI

Manjon F. J., Tiginyanu I. and Ursaki V., Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, Springer Series in Material Science, Springer, Berlin, Heidelberg, 2014

Wei S.-H. Ferreira L. G. Zunger A. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:2533(R). doi: 10.1103/PhysRevB.45.2533. PubMed DOI

Yang J. Wang J. Yang C. Zhang W. Wei S.-H. Phys. Rev. Mater. 2020;4:085402. doi: 10.1103/PhysRevMaterials.4.085402. DOI

Zhang G. Wu H. Chen D. Li N. Xu Q. Li H. He J. Lu J. Green Energy Environ. 2021;7:176. doi: 10.1016/j.gee.2020.12.015. DOI

Wang J. Sun S. Zhou R. Li Y. He Z. Ding H. Chen D. Ao. W. J. Mater. Sci. Technol. 2021;78(1)

Shi L. Yin P. Dai Y. Langmuir. 2013;29:12818. doi: 10.1021/la402473k. PubMed DOI

Liu T. Wang L. Liu X. Sun C. Lv Y. Miao R. Wang X. J. Chem. Eng. 2020;379:122379. doi: 10.1016/j.cej.2019.122379. DOI

Lei Z. You W. Liu M. Zhou G. Takata T. Hara M. Domen K. Li C. Chem. Commun. 2003:2142. doi: 10.1039/B306813G. PubMed DOI

Xing F. Liu Q. Huang C. Sol. RRL. 2020;4:1900483. doi: 10.1002/solr.201900483. DOI

Jiao X. Chen Z. Li X. Sun Y. Gao S. Yan W. Wang C. Zhang Q. Lin Y. Luo Y. Xie Y. J. Am. Chem. Soc. 2017;139:7586. doi: 10.1021/jacs.7b02290. PubMed DOI

Wang S. Guan B. Y. Lu Y. Lou X. W. “D.”. J. Am. Chem. Soc. 2017;139:17305. doi: 10.1021/jacs.7b10733. PubMed DOI

Guo L. Han X. Zhang K. Zhao Q. Wang D. Fu F. Catalysts. 2019;9:729. doi: 10.3390/catal9090729. PubMed DOI PMC

Hao M. Deng X. Xu L. Li Z. Appl. Catal., B. 2019;252:18. doi: 10.1016/j.apcatb.2019.04.002. DOI

Valdman L. Mazánek V. Marvan P. Serra M. Arenal R. Sofer Z. Adv. Opt. Mater. 2021;8:2100845. doi: 10.1002/adom.202100845. DOI

Wei J. Wang C. Zhang T. Dai C.-M. Chen S. Nanoscale. 2019;11:13924. doi: 10.1039/C9NR03752G. PubMed DOI

Niftiev N. N. Alidzhanov M. A. Tagiev O. B. Mamedov F. M. Muradov M. B. Semiconductors. 2004;38:531. doi: 10.1134/1.1755885. DOI

Choi J. Choi S. Choi J. Hwang Y. H. Um Y. H. Hong S. C. Cho S. J. Korean Phys. Soc. 2004;45:672.

Rincón C. Torres T. E. Sagredo V. Jiménez-Sandoval S. J. Mares-Jacinto E. Phys. B. 2015;477:123. doi: 10.1016/j.physb.2015.08.004. DOI

Mantilla Ochoa J. C. Bindilatti V. ter Haar E. Coaquira J. A. H. de Souza Brito G. E. Gratens X. Sagredo V. J. Magn. Magn. Mater. 2004;272–276:1308. doi: 10.1016/j.jmmm.2003.12.1080. DOI

Chen F. Huang H. Guo L. Zhang Y. Ma T. Angew. Chem., Int. Ed. 2019;58:10061. doi: 10.1002/anie.201901361. PubMed DOI

Li J. Cai L. Shang J. Yu Y. Zhang L. Adv. Mater. 2016;18:4059. doi: 10.1002/adma.201600301. PubMed DOI

Liang H. Feng T. Tin S. Zhao K. Wang W. Dong B. Cao L. Chem. Commun. 2019;55:15061. doi: 10.1039/C9CC08145C. PubMed DOI

Zhang D. Chao D. Yu C. Zhu Q. Zhou S. Tian L. Zhou L. J. Phys. Chem. Lett. 2021;12:8939. doi: 10.1021/acs.jpclett.1c02475. PubMed DOI

Enlai G. Shao-Zhen L. Zhao Q. Buehler M. J. Xi-Qiao F. Zhiping X. J. Mech. Phys. Solids. 2018;115:248.

Yang J. Zhou Z. Fang J. Wen H. Lou Z. Shen G. Wei Z. Appl. Phys. Lett. 2019;115:222101. doi: 10.1063/1.5126233. DOI

Sun H. Liang H. Xu Q. Zhou F. Cao L. Catal. Lett. 2024;154:2551. doi: 10.1007/s10562-023-04523-8. DOI

Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2011;257:2717. doi: 10.1016/j.apsusc.2010.10.051. DOI

Nesbitt H. W. Banerjee D. Am. Mineral. 1998;83:305. doi: 10.2138/am-1998-3-414. DOI

Bhatnagar A. K. Subrahmanyam S. V. Solid State Commun. 1982;42:281. doi: 10.1016/0038-1098(82)90543-9. DOI

Prias-Barragan J. J. Tirado-Mejia L. Ariza-Calderon H. Banos L. Perez-Bueno J. J. Rodriguez M. E. J. Cryst. Growth. 2006;286:279. doi: 10.1016/j.jcrysgro.2005.09.022. DOI

Kudrawiec R. Walukiewicz W. J. Appl. Phys. 2019;126:141102. doi: 10.1063/1.5111965. DOI

Aspnes D. E. Surf. Sci. 1973;37:418. doi: 10.1016/0039-6028(73)90337-3. DOI

Vurgaftman I. Meyer J. R. Ram-Mohan L. R. J. Appl. Phys. 2001;89:5815. doi: 10.1063/1.1368156. DOI

Varshni Y. P. Physica. 1967;34:149–154. doi: 10.1016/0031-8914(67)90062-6. DOI

Logothetidis S. Cardona M. Lautenschlager P. Garriga M. Phys. Rev. B: Condens. Matter Mater. Phys. 1986;34:2458–2469. doi: 10.1103/PhysRevB.34.2458. PubMed DOI

Lautenschlager P. Garriga M. Logothetidis S. Cardona. M. Phys. Rev. B: Condens. Matter Mater. Phys. 1987;35:9174–9189. doi: 10.1103/PhysRevB.35.9174. PubMed DOI

Linhart W. M. Rybak M. Birowska M. Scharoch P. Mosina K. Mazánek V. Kaczorowski D. Sofer Z. Kudrawiec R. J. Mater. Chem. C. 2023;11:8423. doi: 10.1039/D3TC01216F. DOI

Mandal L. Chaudhri N. S. Ogale S. ACS Appl. Mater. Interfaces. 2013;5:9141. doi: 10.1021/am4025356. PubMed DOI

Li Z. Qiao H. Guo Z. Ren X. Huang Z. Qi X. Dhanabalan S. C. Ponraj J. S. Zhang D. Li J. Zhao J. Zhong J. Zhang H. Adv. Funct. Mater. 2017;28:1705237. doi: 10.1002/adfm.201705237. DOI

Ren X. Li Z. Huang Z. Sang D. Qiao H. Qi X. Li J. Zhong J. Zhang H. Adv. Funct. Mater. 2017;27:1606834. doi: 10.1002/adfm.201606834. DOI

Ma D. Zhao J. Wang R. Xing C. Li Z. Huang W. Jiang X. Guo Z. Luo Z. Li Y. Li J. Luo S. Zhang Y. Zhang H. ACS Appl. Mater. Interfaces. 2019;11:4278. doi: 10.1021/acsami.8b19836. PubMed DOI

Huang W. Xie Z. Fan T. Li J. Wang Y. Wu L. Ma D. Li Z. Ge Y. Huang Z. N. Dai X. Xiang Y. Li J. Zhu X. Zhang H. J. Mater. Chem. C. 2018;6:9582. doi: 10.1039/C8TC03284J. DOI

Fang H. Li J. Ding J. Sun Y. Li Q. Sun J.-L. Wang L. Yan Q. ACS Appl. Mater. Interfaces. 2017;9:10921. doi: 10.1021/acsami.7b02213. PubMed DOI

Chen S. Teng C. Zhang M. Li Y. Xie D. Shi G. Adv. Mater. 2016;28:5969. doi: 10.1002/adma.201600468. PubMed DOI

Stadelmann P., JEMS Java Electron Microscopy Software, 2014, https://www.jems-swiss.ch/

Zelewski S. J. Kudrawiec R. Sci. Rep. 2017;7:15365. doi: 10.1038/s41598-017-15763-1. PubMed DOI PMC

Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. Chiarotti G. L. Cococcioni M. Dabo I. Dal Corso A. de Gironcoli S. Fabris S. Fratesi G. Gebauer R. Gerstmann U. Gougoussis C. Kokalj A. Lazzeri M. Martin-Santos L. Marzari N. Mauri F. Mazzarello R. Paolini S. Pasquarello A. Paulatto L. Sbraccia C. Umari P. Wentzcovitch R. M. J. Phys.: Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI

Gianozzi P. Andreussi O. Brumme T. Bunau O. Buongiorno Nardelli M. Calandra M. Car R. Cavazzoni C. Ceresoli D. Cococcioni M. Colonna N. Carnimeo I. Dal Corso A. de Gironcoli S. Delugas P. DiStasio Jr. R. A. Ferretti A. Floris A. Fratesi G. Fugallo G. Gebauer R. Gerstmann U. Giustino F. Gorni T. Jia J. Kawamura M. Ko H.-Y. Kokal A. Küçükbenli E. Lazzeri M. Marsili M. Marzari N. Mauri F. Nguyen N. L. Nguyen H.-V. Otero-de-la-Roza A. Paulatto L. Poncé S. Rocca D. Sabatini R. Santra B. Schlimpf M. Seitsonen A. P. Smogunov A. Timrov I. Thornhauser T. Umari P. Vast N. Wu X. Baroni S. J. Phys.: Condens. Matter. 2017;29:465901. doi: 10.1088/1361-648X/aa8f79. PubMed DOI

Hamann D. R. Phys. Rev. B. 2017;95:239906. doi: 10.1103/PhysRevB.95.239906. DOI

Schlimpf M. Gygi F. Comput. Phys. Commun. 2015;196:36. doi: 10.1016/j.cpc.2015.05.011. DOI

Kresse G. Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558(R). doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G. Furthmüller J. Comput. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. DOI

Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Mounet N. Gilbertini M. Schwaller P. Campi D. Merkys A. Marrazzo A. Sohier T. Castelli I. E. Cepellotti A. Pizzi G. Marzari N. Nat. Nanotechnol. 2018;13:246. doi: 10.1038/s41565-017-0035-5. PubMed DOI

Cococcioni M. de Gironcoli S. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;71:035105. doi: 10.1103/PhysRevB.71.035105. DOI

Timrov I. Marzari N. Cococcioni M. Comput. Phys. Commun. 2022;279:108455. doi: 10.1016/j.cpc.2022.108455. DOI

Ricca C. Timrov I. Cococcioni M. Marzari N. Aschauer U. Phys. Rev. Res. 2020;2:023313. doi: 10.1103/PhysRevResearch.2.023313. DOI

Timrov I. Aquilante F. Binci L. Cococcioni M. Marzari N. Phys. Rev. B. 2020;102:235159. doi: 10.1103/PhysRevB.102.235159. DOI

Bastonero L. Marzari N. npj Comput. Mater. 2024;10:55. doi: 10.1038/s41524-024-01236-3. PubMed DOI PMC

Huber S. Zoupanos S. Uhrin M. Talirz L. Kahle L. Häuselmann R. Gresch D. Müller T. Yakutovich A. V. Andersen C. W. Ramirez F. F. Adorf C. S. Gargiulo F. Kumbhar S. Passaro E. Johnston C. Merkys A. Cepellotti A. Mounet N. Marzari N. Kozinsky B. Pizzi G. Sci. Data. 2020;7:300. doi: 10.1038/s41597-020-00638-4. PubMed DOI PMC

Pizzi G. Cepellotti A. Sabatini R. Marzari N. Kozinsky B. Comput. Mater. Sci. 2016;111:218. doi: 10.1016/j.commatsci.2015.09.013. DOI

Uhrin M. Huber S. P. Yu J. Marzari N. Pizzi G. Comput. Mater. Sci. 2021;187:110086. doi: 10.1016/j.commatsci.2020.110086. DOI

Umari P. Pasquarrello A. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI

Souza I. Íñiguez J. Vanderbilt D. Phys. Rev. Lett. 2002;89:117602. doi: 10.1103/PhysRevLett.89.117602. PubMed DOI

Togo A. Tanaka I. Scr. Mater. 2015;108:1. doi: 10.1016/j.scriptamat.2015.07.021. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...