A photodetector based on the non-centrosymmetric 2D pseudo-binary chalcogenide MnIn2Se4
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39896131
PubMed Central
PMC11783042
DOI
10.1039/d4tc04380d
PII: d4tc04380d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Due to their attractive band gap properties and van der Waals structure, 2D binary chalcogenide materials have been widely investigated in the last decade, finding applications in several fields such as catalysis, spintronics, and optoelectronics. Ternary 2D chalcogenide materials are a subject of growing interest in materials science due to their superior chemical tunability which endows tailored properties to the devices prepared thereof. In the family of AIIBIII 2XVI 4, ordered ZnIn2S4-like based photocatalytic systems have been studied meticulously. In contrast, reports on disordered phases appear to a minor extent. Herein, a photoelectrochemical (PEC) detector based on the pseudo-binary MnIn2Se4 system is presented. A combination of optical measurements and DFT calculations confirmed that the nature of the bandgap in MnIn2Se4 is indirect. Its performance outclasses that of parent compounds, reaching responsivity values of 8.41 mA W-1. The role of the non-centrosymmetric crystal structure is briefly discussed as a possible cause of improved charge separation of the photogenerated charge carriers.
Laboratory for Materials Simulations Paul Scherrer Institut 5232 Villigen Switzerland
Theory and Simulation of Materials Lausanne CH 1015 Lausanne Switzerland
Zobrazit více v PubMed
Li Y. Li Z. Chi C. Shan H. Zheng L. Fang Z. Adv. Sci. 2017;4:1600430. doi: 10.1002/advs.201600430. PubMed DOI PMC
Li Z. Hong E. Zhang X. Deng M. Fang X. Small. 2023;19:2206310. doi: 10.1002/smll.202206310. PubMed DOI
Fan X. Hong E. Wang P. Fang X. Adv. Mater. 2024;36:2400365. doi: 10.1002/adma.202400365. PubMed DOI
Li Z. Hong E. Zhang X. Deng M. Fang X. J. Phys. Chem. Lett. 2022;13:1215. doi: 10.1021/acs.jpclett.1c04225. PubMed DOI
Deng M. Li Z. Liu S. Fang X. Wu L. Nat. Commun. 2024;15:8789. doi: 10.1038/s41467-024-52840-2. PubMed DOI PMC
Choudhuri I. Bhaurival P. Pathak B. Chem. Mater. 2019;31:8260. doi: 10.1021/acs.chemmater.9b02243. DOI
Zhu Y. Peng L. Fang Z. Yan C. Zhang X. Yu G. Adv. Mater. 2018;30:1706347. doi: 10.1002/adma.201706347. PubMed DOI
Park J. Kim M. S. Cha E. Kim J. Choi W. Sci. Rep. 2017;7:16121. doi: 10.1038/s41598-017-16251-2. PubMed DOI PMC
Duong D. L. Yun S. J. Lee Y. H. ACS Nano. 2017;11:11803. doi: 10.1021/acsnano.7b07436. PubMed DOI
Perea-López N. Elías A. L. Barkdemir A. Castro-Beltrán A. Gutiérrez H. R. Feng S. Lv R. Hayashi T. López-Urías F. Ghosh S. Muchharla B. Talapatra S. Terrones H. Adv. Funct. Mater. 2013;23:5511. doi: 10.1002/adfm.201300760. DOI
Cong C. Shang J. Wang Y. Yu T. Adv. Opt. Mater. 2017;6:1700767. doi: 10.1002/adom.201700767. DOI
Li J. Han J. Li H. Fan X. Huang K. Mater. Sci. Semicond. Process. 2020;107:104804. doi: 10.1016/j.mssp.2019.104804. DOI
Huo N. Kang J. Wei Z. Li S.-S. Li J. Wei S.-H. Adv. Funct. Mater. 2014;24:7025. doi: 10.1002/adfm.201401504. DOI
Muller G. A. Cook J. B. Kim H.-S. Tolbert S. H. Dunn B. Nano Lett. 2015;15:1911. doi: 10.1021/nl504764m. PubMed DOI
Zhang Z. Ouyang Y. Cheng Y. Chen J. Li N. Zhang G. Phys. Rep. 2020;860:1. doi: 10.1016/j.physrep.2020.03.001. DOI
Bhattacharya D. Mukherjee S. Mitra R. K. Ray S. K. Nanotechnology. 2020;31:145701. doi: 10.1088/1361-6528/ab61ce. PubMed DOI
Singh M. Gaspera E. D. Ahmed T. Walia S. Ramanathan R. van Embden J. Mayes E. Bansal V. 2D Mater. 2017;4:025110. doi: 10.1088/2053-1583/aa6efc. DOI
Ciarrocchi A. Avsar A. Ovchinikov D. Kis A. Nat. Commun. 2018;9:919. doi: 10.1038/s41467-018-03436-0. PubMed DOI PMC
Lei S. Ge L. Liu Z. Najmaei S. Shi G. You G. Lou J. Vajtai R. Ajayan P. M. Nano Lett. 2013;13:2777–2781. doi: 10.1021/nl4010089. PubMed DOI
Yao J. D. Zheng Z. Q. Shao J. M. Yang G. W. Nanoscale. 2015;7:14974–14981. doi: 10.1039/C5NR03361F. PubMed DOI
Huang W. Gan L. Yang H. Zhou N. Wang R. Wu W. Li H. Ma Y. Zeng H. Zhai T. Adv. Funct. Mater. 2017;27:1702448. doi: 10.1002/adfm.201702448. DOI
Wang L. Hu P. Long Y. Liu Z. He X. J. Mater. Chem. A. 2017;5:22855. doi: 10.1039/C7TA06971E. DOI
Gao T. Zhang Q. Li L. Zhou X. Li L. Li H. Zhai T. Adv. Opt. Mater. 2018;6:1800058. doi: 10.1002/adom.201800058. DOI
Yu P. Lin J. Sun L. Le Q. L. Yu X. Gao G. Hsu C.-H. Wu D. Chang T.-R. Zeng Q. Li F. Wang Q. J. Jeng H.-T. Lin H. Trampert A. Shen Z. Suenaga K. Liu Z. Adv. Mater. 2017;29:1603991. doi: 10.1002/adma.201603991. PubMed DOI
Maeda T. Gong W. Wada T. Jpn. J. Appl. Phys. 2016;55:04ES15. doi: 10.7567/JJAP.55.04ES15. DOI
Kiran V. Mukherjee D. Jenjeti R. N. Sampath S. Nanoscale. 2014;6:12856. doi: 10.1039/C4NR03716B. PubMed DOI
Shi J. Cerqueira T. F. T. Cui W. Nogueira F. Botti S. Marques M. A. L. Sci. Rep. 2017;7:43179. doi: 10.1038/srep43179. PubMed DOI PMC
Pal K. Xia Y. Shen J. He J. Luo Y. Kanatzidis M. G. Wolverton C. npj Comput. Mater. 2021;7:82. doi: 10.1038/s41524-021-00549-x. DOI
Haeuseler H. J. Solid State Chem. 1979;29:121. doi: 10.1016/0022-4596(79)90216-0. DOI
Razzetti C. Lottici P. P. Antonioli G. Prog. Cryst. Growth Charact. 1987;15:43. doi: 10.1016/0146-3535(87)90009-8. DOI
Ranged K.-J. Z. Naturforsch. 1996;51b:1363. doi: 10.1515/znb-1996-0925. DOI
Lopez-Rivera S. A. Mora A. J. Acosta Najarro D. Rivera A. V. Avila Godoy R. Semicond. Sci. Technol. 2001;16:367. doi: 10.1088/0268-1242/16/5/315. DOI
Rincón C. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:12716. doi: 10.1103/PhysRevB.45.12716. PubMed DOI
Gastaldi L. Maltese A. Viticoli S. J. Cryst. Growth. 1984;66:673. doi: 10.1016/0022-0248(84)90167-2. DOI
Döll G. Lux-Steiner M. C. Kloc C. Baumann J. R. Bucher E. J. Cryst. Growth. 1990;104:593. doi: 10.1016/0022-0248(90)90002-3. DOI
Ohtani T. Honjo H. Wada H. Mater. Res. Bull. 1987;22:829. doi: 10.1016/0025-5408(87)90038-9. DOI
Manjon F. J., Tiginyanu I. and Ursaki V., Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds, Springer Series in Material Science, Springer, Berlin, Heidelberg, 2014
Wei S.-H. Ferreira L. G. Zunger A. Phys. Rev. B: Condens. Matter Mater. Phys. 1992;45:2533(R). doi: 10.1103/PhysRevB.45.2533. PubMed DOI
Yang J. Wang J. Yang C. Zhang W. Wei S.-H. Phys. Rev. Mater. 2020;4:085402. doi: 10.1103/PhysRevMaterials.4.085402. DOI
Zhang G. Wu H. Chen D. Li N. Xu Q. Li H. He J. Lu J. Green Energy Environ. 2021;7:176. doi: 10.1016/j.gee.2020.12.015. DOI
Wang J. Sun S. Zhou R. Li Y. He Z. Ding H. Chen D. Ao. W. J. Mater. Sci. Technol. 2021;78(1)
Shi L. Yin P. Dai Y. Langmuir. 2013;29:12818. doi: 10.1021/la402473k. PubMed DOI
Liu T. Wang L. Liu X. Sun C. Lv Y. Miao R. Wang X. J. Chem. Eng. 2020;379:122379. doi: 10.1016/j.cej.2019.122379. DOI
Lei Z. You W. Liu M. Zhou G. Takata T. Hara M. Domen K. Li C. Chem. Commun. 2003:2142. doi: 10.1039/B306813G. PubMed DOI
Xing F. Liu Q. Huang C. Sol. RRL. 2020;4:1900483. doi: 10.1002/solr.201900483. DOI
Jiao X. Chen Z. Li X. Sun Y. Gao S. Yan W. Wang C. Zhang Q. Lin Y. Luo Y. Xie Y. J. Am. Chem. Soc. 2017;139:7586. doi: 10.1021/jacs.7b02290. PubMed DOI
Wang S. Guan B. Y. Lu Y. Lou X. W. “D.”. J. Am. Chem. Soc. 2017;139:17305. doi: 10.1021/jacs.7b10733. PubMed DOI
Guo L. Han X. Zhang K. Zhao Q. Wang D. Fu F. Catalysts. 2019;9:729. doi: 10.3390/catal9090729. PubMed DOI PMC
Hao M. Deng X. Xu L. Li Z. Appl. Catal., B. 2019;252:18. doi: 10.1016/j.apcatb.2019.04.002. DOI
Valdman L. Mazánek V. Marvan P. Serra M. Arenal R. Sofer Z. Adv. Opt. Mater. 2021;8:2100845. doi: 10.1002/adom.202100845. DOI
Wei J. Wang C. Zhang T. Dai C.-M. Chen S. Nanoscale. 2019;11:13924. doi: 10.1039/C9NR03752G. PubMed DOI
Niftiev N. N. Alidzhanov M. A. Tagiev O. B. Mamedov F. M. Muradov M. B. Semiconductors. 2004;38:531. doi: 10.1134/1.1755885. DOI
Choi J. Choi S. Choi J. Hwang Y. H. Um Y. H. Hong S. C. Cho S. J. Korean Phys. Soc. 2004;45:672.
Rincón C. Torres T. E. Sagredo V. Jiménez-Sandoval S. J. Mares-Jacinto E. Phys. B. 2015;477:123. doi: 10.1016/j.physb.2015.08.004. DOI
Mantilla Ochoa J. C. Bindilatti V. ter Haar E. Coaquira J. A. H. de Souza Brito G. E. Gratens X. Sagredo V. J. Magn. Magn. Mater. 2004;272–276:1308. doi: 10.1016/j.jmmm.2003.12.1080. DOI
Chen F. Huang H. Guo L. Zhang Y. Ma T. Angew. Chem., Int. Ed. 2019;58:10061. doi: 10.1002/anie.201901361. PubMed DOI
Li J. Cai L. Shang J. Yu Y. Zhang L. Adv. Mater. 2016;18:4059. doi: 10.1002/adma.201600301. PubMed DOI
Liang H. Feng T. Tin S. Zhao K. Wang W. Dong B. Cao L. Chem. Commun. 2019;55:15061. doi: 10.1039/C9CC08145C. PubMed DOI
Zhang D. Chao D. Yu C. Zhu Q. Zhou S. Tian L. Zhou L. J. Phys. Chem. Lett. 2021;12:8939. doi: 10.1021/acs.jpclett.1c02475. PubMed DOI
Enlai G. Shao-Zhen L. Zhao Q. Buehler M. J. Xi-Qiao F. Zhiping X. J. Mech. Phys. Solids. 2018;115:248.
Yang J. Zhou Z. Fang J. Wen H. Lou Z. Shen G. Wei Z. Appl. Phys. Lett. 2019;115:222101. doi: 10.1063/1.5126233. DOI
Sun H. Liang H. Xu Q. Zhou F. Cao L. Catal. Lett. 2024;154:2551. doi: 10.1007/s10562-023-04523-8. DOI
Biesinger M. C. Payne B. P. Grosvenor A. P. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2011;257:2717. doi: 10.1016/j.apsusc.2010.10.051. DOI
Nesbitt H. W. Banerjee D. Am. Mineral. 1998;83:305. doi: 10.2138/am-1998-3-414. DOI
Bhatnagar A. K. Subrahmanyam S. V. Solid State Commun. 1982;42:281. doi: 10.1016/0038-1098(82)90543-9. DOI
Prias-Barragan J. J. Tirado-Mejia L. Ariza-Calderon H. Banos L. Perez-Bueno J. J. Rodriguez M. E. J. Cryst. Growth. 2006;286:279. doi: 10.1016/j.jcrysgro.2005.09.022. DOI
Kudrawiec R. Walukiewicz W. J. Appl. Phys. 2019;126:141102. doi: 10.1063/1.5111965. DOI
Aspnes D. E. Surf. Sci. 1973;37:418. doi: 10.1016/0039-6028(73)90337-3. DOI
Vurgaftman I. Meyer J. R. Ram-Mohan L. R. J. Appl. Phys. 2001;89:5815. doi: 10.1063/1.1368156. DOI
Varshni Y. P. Physica. 1967;34:149–154. doi: 10.1016/0031-8914(67)90062-6. DOI
Logothetidis S. Cardona M. Lautenschlager P. Garriga M. Phys. Rev. B: Condens. Matter Mater. Phys. 1986;34:2458–2469. doi: 10.1103/PhysRevB.34.2458. PubMed DOI
Lautenschlager P. Garriga M. Logothetidis S. Cardona. M. Phys. Rev. B: Condens. Matter Mater. Phys. 1987;35:9174–9189. doi: 10.1103/PhysRevB.35.9174. PubMed DOI
Linhart W. M. Rybak M. Birowska M. Scharoch P. Mosina K. Mazánek V. Kaczorowski D. Sofer Z. Kudrawiec R. J. Mater. Chem. C. 2023;11:8423. doi: 10.1039/D3TC01216F. DOI
Mandal L. Chaudhri N. S. Ogale S. ACS Appl. Mater. Interfaces. 2013;5:9141. doi: 10.1021/am4025356. PubMed DOI
Li Z. Qiao H. Guo Z. Ren X. Huang Z. Qi X. Dhanabalan S. C. Ponraj J. S. Zhang D. Li J. Zhao J. Zhong J. Zhang H. Adv. Funct. Mater. 2017;28:1705237. doi: 10.1002/adfm.201705237. DOI
Ren X. Li Z. Huang Z. Sang D. Qiao H. Qi X. Li J. Zhong J. Zhang H. Adv. Funct. Mater. 2017;27:1606834. doi: 10.1002/adfm.201606834. DOI
Ma D. Zhao J. Wang R. Xing C. Li Z. Huang W. Jiang X. Guo Z. Luo Z. Li Y. Li J. Luo S. Zhang Y. Zhang H. ACS Appl. Mater. Interfaces. 2019;11:4278. doi: 10.1021/acsami.8b19836. PubMed DOI
Huang W. Xie Z. Fan T. Li J. Wang Y. Wu L. Ma D. Li Z. Ge Y. Huang Z. N. Dai X. Xiang Y. Li J. Zhu X. Zhang H. J. Mater. Chem. C. 2018;6:9582. doi: 10.1039/C8TC03284J. DOI
Fang H. Li J. Ding J. Sun Y. Li Q. Sun J.-L. Wang L. Yan Q. ACS Appl. Mater. Interfaces. 2017;9:10921. doi: 10.1021/acsami.7b02213. PubMed DOI
Chen S. Teng C. Zhang M. Li Y. Xie D. Shi G. Adv. Mater. 2016;28:5969. doi: 10.1002/adma.201600468. PubMed DOI
Stadelmann P., JEMS Java Electron Microscopy Software, 2014, https://www.jems-swiss.ch/
Zelewski S. J. Kudrawiec R. Sci. Rep. 2017;7:15365. doi: 10.1038/s41598-017-15763-1. PubMed DOI PMC
Giannozzi P. Baroni S. Bonini N. Calandra M. Car R. Cavazzoni C. Ceresoli D. Chiarotti G. L. Cococcioni M. Dabo I. Dal Corso A. de Gironcoli S. Fabris S. Fratesi G. Gebauer R. Gerstmann U. Gougoussis C. Kokalj A. Lazzeri M. Martin-Santos L. Marzari N. Mauri F. Mazzarello R. Paolini S. Pasquarello A. Paulatto L. Sbraccia C. Umari P. Wentzcovitch R. M. J. Phys.: Condens. Matter. 2009;21:395502. doi: 10.1088/0953-8984/21/39/395502. PubMed DOI
Gianozzi P. Andreussi O. Brumme T. Bunau O. Buongiorno Nardelli M. Calandra M. Car R. Cavazzoni C. Ceresoli D. Cococcioni M. Colonna N. Carnimeo I. Dal Corso A. de Gironcoli S. Delugas P. DiStasio Jr. R. A. Ferretti A. Floris A. Fratesi G. Fugallo G. Gebauer R. Gerstmann U. Giustino F. Gorni T. Jia J. Kawamura M. Ko H.-Y. Kokal A. Küçükbenli E. Lazzeri M. Marsili M. Marzari N. Mauri F. Nguyen N. L. Nguyen H.-V. Otero-de-la-Roza A. Paulatto L. Poncé S. Rocca D. Sabatini R. Santra B. Schlimpf M. Seitsonen A. P. Smogunov A. Timrov I. Thornhauser T. Umari P. Vast N. Wu X. Baroni S. J. Phys.: Condens. Matter. 2017;29:465901. doi: 10.1088/1361-648X/aa8f79. PubMed DOI
Hamann D. R. Phys. Rev. B. 2017;95:239906. doi: 10.1103/PhysRevB.95.239906. DOI
Schlimpf M. Gygi F. Comput. Phys. Commun. 2015;196:36. doi: 10.1016/j.cpc.2015.05.011. DOI
Kresse G. Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558(R). doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G. Furthmüller J. Comput. Mater. Sci. 1996;6:15. doi: 10.1016/0927-0256(96)00008-0. DOI
Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Mounet N. Gilbertini M. Schwaller P. Campi D. Merkys A. Marrazzo A. Sohier T. Castelli I. E. Cepellotti A. Pizzi G. Marzari N. Nat. Nanotechnol. 2018;13:246. doi: 10.1038/s41565-017-0035-5. PubMed DOI
Cococcioni M. de Gironcoli S. Phys. Rev. B: Condens. Matter Mater. Phys. 2005;71:035105. doi: 10.1103/PhysRevB.71.035105. DOI
Timrov I. Marzari N. Cococcioni M. Comput. Phys. Commun. 2022;279:108455. doi: 10.1016/j.cpc.2022.108455. DOI
Ricca C. Timrov I. Cococcioni M. Marzari N. Aschauer U. Phys. Rev. Res. 2020;2:023313. doi: 10.1103/PhysRevResearch.2.023313. DOI
Timrov I. Aquilante F. Binci L. Cococcioni M. Marzari N. Phys. Rev. B. 2020;102:235159. doi: 10.1103/PhysRevB.102.235159. DOI
Bastonero L. Marzari N. npj Comput. Mater. 2024;10:55. doi: 10.1038/s41524-024-01236-3. PubMed DOI PMC
Huber S. Zoupanos S. Uhrin M. Talirz L. Kahle L. Häuselmann R. Gresch D. Müller T. Yakutovich A. V. Andersen C. W. Ramirez F. F. Adorf C. S. Gargiulo F. Kumbhar S. Passaro E. Johnston C. Merkys A. Cepellotti A. Mounet N. Marzari N. Kozinsky B. Pizzi G. Sci. Data. 2020;7:300. doi: 10.1038/s41597-020-00638-4. PubMed DOI PMC
Pizzi G. Cepellotti A. Sabatini R. Marzari N. Kozinsky B. Comput. Mater. Sci. 2016;111:218. doi: 10.1016/j.commatsci.2015.09.013. DOI
Uhrin M. Huber S. P. Yu J. Marzari N. Pizzi G. Comput. Mater. Sci. 2021;187:110086. doi: 10.1016/j.commatsci.2020.110086. DOI
Umari P. Pasquarrello A. Phys. Rev. Lett. 2002;89:157602. doi: 10.1103/PhysRevLett.89.157602. PubMed DOI
Souza I. Íñiguez J. Vanderbilt D. Phys. Rev. Lett. 2002;89:117602. doi: 10.1103/PhysRevLett.89.117602. PubMed DOI
Togo A. Tanaka I. Scr. Mater. 2015;108:1. doi: 10.1016/j.scriptamat.2015.07.021. DOI