• This record comes from PubMed

Quinoxaline-based anti-schistosomal compounds have potent anti-plasmodial activity

. 2025 Feb ; 21 (2) : e1012216. [epub] 20250203

Language English Country United States Media electronic-ecollection

Document type Journal Article

Grant support
INV-033538 Gates Foundation - United States
Wellcome Trust - United Kingdom
R01 AI185559 NIAID NIH HHS - United States
R01 AI124678 NIAID NIH HHS - United States
R01 AI109023 NIAID NIH HHS - United States

Links

PubMed 39899599
PubMed Central PMC11809919
DOI 10.1371/journal.ppat.1012216
PII: PPATHOGENS-D-24-00857
Knihovny.cz E-resources

The human pathogens Plasmodium and Schistosoma are each responsible for over 200 million infections annually, especially in low- and middle-income countries. There is a pressing need for new drug targets for these diseases, driven by emergence of drug-resistance in Plasmodium and an overall dearth of drug targets against Schistosoma. Here, we explored the opportunity for pathogen-hopping by evaluating a series of quinoxaline-based anti-schistosomal compounds for their activity against P. falciparum. We identified compounds with low nanomolar potency against 3D7 and multidrug-resistant strains. In vitro resistance selections using wildtype and mutator P. falciparum lines revealed a low propensity for resistance. Only one of the series, compound 22, yielded resistance mutations, including point mutations in a non-essential putative hydrolase pfqrp1, as well as copy number amplification of a phospholipid-translocating ATPase, pfatp2, a potential target. Notably, independently generated CRISPR-edited mutants in pfqrp1 also showed resistance to compound 22 and a related analogue. Moreover, previous lines with pfatp2 copy number variations were similarly less susceptible to challenge with the new compounds. Finally, we examined whether the predicted hydrolase activity of PfQRP1 underlies its mechanism of resistance, showing that both mutation of the putative catalytic triad and a more severe loss of function mutation elicited resistance. Collectively, we describe a compound series with potent activity against two important pathogens and their potential target in P. falciparum.

Update Of

PubMed

See more in PubMed

WHO. World malaria report. WHO; 2024.. Available from: https://www.who.int/publications/i/item/9789240104440

Rosenthal PJ, Asua V, Bailey JA, Conrad MD, Ishengoma DS, Kamya MR, et al.. The emergence of artemisinin partial resistance in Africa: how do we respond? Lancet Infect Dis. 2024;24(9):e591–600. Epub 2024/03/26. doi: 10.1016/S1473-3099(24)00141-5 PubMed DOI

White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev. 2024;37(4):e0010924. Epub 2024/10/15. doi: 10.1128/cmr.00109-24 PubMed DOI PMC

Burrows JN, Duparc S, Gutteridge WE, Hooft van Huijsduijnen R, Kaszubska W, Macintyre F, et al.. New developments in anti-malarial target candidate and product profiles. Malar J. 2017;16(1):26. Epub 2017/01/13. doi: 10.1186/s12936-016-1675-x PubMed DOI PMC

Luth MR, Gupta P, Ottilie S, Winzeler EA. Using in vitro evolution and whole genome analysis to discover next generation targets for antimalarial drug discovery. ACS Infect Dis. 2018;4(3):301–14. Epub 2018/02/21. doi: 10.1021/acsinfecdis.7b00276 PubMed DOI PMC

Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol. 2021;37(8):709–21. Epub 2021/05/14. doi: 10.1016/j.pt.2021.04.006 PubMed DOI PMC

Pereira JA, Pessoa AM, Cordeiro MNDS, Fernandes R, Prudêncio C, Noronha JP, et al.. Quinoxaline, its derivatives and applications: a state of the art review. Eur J Med Chem. 2015;97:664–72. Epub 2014/07/01. doi: 10.1016/j.ejmech.2014.06.058 PubMed DOI

McNamara CW, Lee MC, Lim CS, Lim SH, Roland J, Simon O, et al.. Targeting Plasmodium PI(4)K to eliminate malaria. Nature. 2013;504(7479):248–53. Epub 2013/11/27. doi: 10.1038/nature12782 PubMed DOI PMC

Kümpornsin K, Kochakarn T, Yeo T, Okombo J, Luth MR, Hoshizaki J, et al.. Generation of a mutator parasite to drive resistome discovery in Plasmodium falciparum. Nat Commun. 2023;14(1):3059. Epub 2023/05/27. doi: 10.1038/s41467-023-38774-1 PubMed DOI PMC

Chen MM, Shi L, Sullivan DJ Jr. Haemoproteus and Schistosoma synthesize heme polymers similar to Plasmodium hemozoin and beta-hematin. Mol Biochem Parasitol. 2001;113(1):1–8. doi: 10.1016/s0166-6851(00)00365-0 PubMed DOI

Okombo J, Singh K, Mayoka G, Ndubi F, Barnard L, Njogu PM, et al.. Antischistosomal activity of Pyrido[1,2-a]benzimidazole derivatives and correlation with inhibition of β-hematin formation. ACS Infect Dis. 2017;3(6):411–20. Epub 2017/05/03. doi: 10.1021/acsinfecdis.6b00205 PubMed DOI

Wang W, Li Q, Wei Y, Xue J, Sun X, Yu Y, et al.. Novel carbazole aminoalcohols as inhibitors of β-hematin formation: Antiplasmodial and antischistosomal activities. Int J Parasitol Drugs Drug Resist. 2017;7(2):191–9. Epub 2017/04/02. doi: 10.1016/j.ijpddr.2017.03.007 PubMed DOI PMC

Padalino G, El-Sakkary N, Liu LJ, Liu C, Harte DSG, Barnes RE, et al.. Anti-schistosomal activities of quinoxaline-containing compounds: from hit identification to lead optimisation. Eur J Med Chem. 2021;226:113823. Epub 2021/09/10. doi: 10.1016/j.ejmech.2021.113823 PubMed DOI PMC

Linares M, Viera S, Crespo B, Franco V, Gómez-Lorenzo MG, Jiménez-Díaz MB, et al.. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay. Malar J. 2015;14:441. doi: 10.1186/s12936-015-0962-2 PubMed DOI PMC

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. doi: 10.1016/s0169-409x(00)00129-0 PubMed DOI

Jia C-Y, Li J-Y, Hao G-F, Yang G-F. A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discov Today. 2020;25(1):248–58. Epub 2019/11/06. doi: 10.1016/j.drudis.2019.10.014 PubMed DOI

Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. Epub 2017/03/03. doi: 10.1038/srep42717 PubMed DOI PMC

Sever B, Altintop MD, Akalin Çiftçi G. In vitro and in silico assessment of antiproliferative activity of new acetamides bearing 1,3,4-oxadiazole and pyrimidine cores via COX inhibition. J Res Pharm. 2020;24(5):656–69. doi: 10.35333/jrp.2020.221 DOI

Ng CL, Fidock DA. Plasmodium falciparum in vitro drug resistance selections and gene editing. Methods Mol Biol. 2019;2013:123–40. doi: 10.1007/978-1-4939-9550-9_9 PubMed DOI PMC

Kuhen KL, Chatterjee AK, Rottmann M, Gagaring K, Borboa R, Buenviaje J, et al.. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob Agents Chemother. 2014;58(9):5060–7. Epub 2014/06/09. doi: 10.1128/AAC.02727-13 PubMed DOI PMC

Cowell AN, Istvan ES, Lukens AK, Gomez-Lorenzo MG, Vanaerschot M, Sakata-Kato T, et al.. Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science. 2018;359(6372):191–9. doi: 10.1126/science.aan4472 PubMed DOI PMC

Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, Adapa SR, et al.. Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018;360(6388):eaap7847. doi: 10.1126/science.aap7847 PubMed DOI PMC

Carter MD, Phelan VV, Sandlin RD, Bachmann BO, Wright DW. Lipophilic mediated assays for beta-hematin inhibitors. Comb Chem High Throughput Screen. 2010;13(3):285–92. doi: 10.2174/138620710790980496 PubMed DOI PMC

Combrinck JM, Fong KY, Gibhard L, Smith PJ, Wright DW, Egan TJ. Optimization of a multi-well colorimetric assay to determine haem species in Plasmodium falciparum in the presence of anti-malarials. Malar J. 2015;14:253. Epub 2015/06/24. doi: 10.1186/s12936-015-0729-9 PubMed DOI PMC

Istvan ES, Mallari JP, Corey VC, Dharia NV, Marshall GR, Winzeler EA, et al.. Esterase mutation is a mechanism of resistance to antimalarial compounds. Nat Commun. 2017;8:14240. Epub 2017/01/20. doi: 10.1038/ncomms14240 PubMed DOI PMC

Andersen JP, Vestergaard AL, Mikkelsen SA, Mogensen LS, Chalat M, Molday RS. P4-ATPases as phospholipid flippases-structure, function, and enigmas. Front Physiol. 2016;7:275. Epub 2016/07/08. doi: 10.3389/fphys.2016.00275 PubMed DOI PMC

Best JT, Xu P, Graham TR. Phospholipid flippases in membrane remodeling and transport carrier biogenesis. Curr Opin Cell Biol. 2019;59:8–15. Epub 2019/03/18. doi: 10.1016/j.ceb.2019.02.004 PubMed DOI PMC

Fraser M, Matuschewski K, Maier AG. The enemy within: lipid asymmetry in intracellular parasite-host interactions. Emerg Top Life Sci. 2023;7(1):67–79. doi: 10.1042/ETLS20220089 PubMed DOI PMC

Bushell E, Gomes AR, Sanderson T, Anar B, Girling G, Herd C, et al.. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell. 2017;170(2):260–72.e8. doi: 10.1016/j.cell.2017.06.030 PubMed DOI PMC

Kenthirapalan S, Waters AP, Matuschewski K, Kooij TWA. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite. Nat Commun. 2016;7:10519. Epub 2016/01/22. doi: 10.1038/ncomms10519 PubMed DOI PMC

Qiu D, England E, Lehane AM. PfATP2 is an essential flippase on the Plasmodium falciparum surface that influences parasite sensitivity to antiplasmodial compounds. bioRxiv. 2024:2024.12.23.630022. doi: 10.1101/2024.12.23.630022 DOI

Patel A, Nofal SD, Blackman MJ, Baker DA. CDC50 Orthologues in Plasmodium falciparum have distinct roles in merozoite egress and trophozoite maturation. mBio. 2022;13(4):e0163522. Epub 2022/07/12. doi: 10.1128/mbio.01635-22 PubMed DOI PMC

Rottmann M, McNamara C, Yeung BKS, Lee MCS, Zou B, Russell B, et al.. Spiroindolones, a potent compound class for the treatment of malaria. Science. 2010;329(5996):1175–80. doi: 10.1126/science.1193225 PubMed DOI PMC

Schmitt EK, Ndayisaba G, Yeka A, Asante KP, Grobusch MP, Karita E, et al.. Efficacy of Cipargamin (KAE609) in a randomized, phase ii dose-escalation study in adults in Sub-Saharan Africa with uncomplicated Plasmodium falciparum malaria. Clin Infect Dis. 2022;74(10):1831–9. doi: 10.1093/cid/ciab716 PubMed DOI PMC

Stanway RR, Bushell E, Chiappino-Pepe A, Roques M, Sanderson T, Franke-Fayard B, et al.. Genome-Scale identification of essential metabolic processes for targeting the Plasmodium liver stage. Cell. 2019;179(5):1112–8.e26. doi: 10.1016/j.cell.2019.10.030 PubMed DOI PMC

Meister S, Plouffe DM, Kuhen KL, Bonamy GMC, Wu T, Barnes SW, et al.. Imaging of Plasmodium liver stages to drive next-generation antimalarial drug discovery. Science. 2011;334(6061):1372–7. Epub 2011/11/17. doi: 10.1126/science.1211936 PubMed DOI PMC

Dans MG, Boulet C, Watson GM, Nguyen W, Dziekan JM, Evelyn C, et al.. Aryl amino acetamides prevent Plasmodium falciparum ring development via targeting the lipid-transfer protein PfSTART1. Nat Commun. 2024;15(1):5219. Epub 2024/06/18. doi: 10.1038/s41467-024-49491-8 PubMed DOI PMC

Ingram-Sieber K, Cowan N, Panic G, Vargas M, Mansour NR, Bickle QD, et al.. Orally active antischistosomal early leads identified from the open access malaria box. PLoS Negl Trop Dis. 2014;8(1):e2610. Epub 2014/01/09. doi: 10.1371/journal.pntd.0002610 PubMed DOI PMC

Rivadeneira EM, Wasserman M, Espinal CT. Separation and concentration of schizonts of Plasmodium falciparum by Percoll gradients. J Protozool. 1983;30(2):367–70. doi: 10.1111/j.1550-7408.1983.tb02932.x PubMed DOI

Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, et al.. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. Elife. 2021;10:e66277. Epub 2021/07/19. doi: 10.7554/eLife.66277 PubMed DOI PMC

Lee AH, Fidock DA. Evidence of a mild mutator phenotype in Cambodian Plasmodium falciparum malaria parasites. PLoS ONE. 2016;11(4):e0154166. Epub 2016/04/21. doi: 10.1371/journal.pone.0154166 PubMed DOI PMC

Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, et al.. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347(6220):428–31. Epub 2014/12/11. doi: 10.1126/science.1260867 PubMed DOI PMC

Adjalley S, Lee MCS. CRISPR/Cas9 editing of the Plasmodium falciparum genome. Methods Mol Biol. 2022;2470:221–39. doi: 10.1007/978-1-0716-2189-9_17 PubMed DOI

Murithi JM, Owen ES, Istvan ES, Lee MCS, Ottilie S, Chibale K, et al.. Combining stage specificity and metabolomic profiling to advance antimalarial drug discovery. Cell Chem Biol. 2020;27(2):158–71.e3. Epub 2019/12/05. doi: 10.1016/j.chembiol.2019.11.009 PubMed DOI PMC

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al.. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92. doi: 10.4161/fly.19695 PubMed DOI PMC

Xi R, Hadjipanayis AG, Luquette LJ, Kim T-M, Lee E, Zhang J, et al.. Copy number variation detection in whole-genome sequencing data using the Bayesian information criterion. Proc Natl Acad Sci U S A. 2011;108(46):E1128–36. Epub 2011/11/07. doi: 10.1073/pnas.1110574108 PubMed DOI PMC

Palmgren M, Østerberg JT, Nintemann SJ, Poulsen LR, López-Marqués RL. Evolution and a revised nomenclature of P4 ATPases, a eukaryotic family of lipid flippases. Biochim Biophys Acta Biomembr. 2019;1861(6):1135–51. Epub 2019/02/23. doi: 10.1016/j.bbamem.2019.02.006 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...