The histone methyltransferase DOT1B is dispensable for stage differentiation and macrophage infection of Leishmania mexicana

. 2024 ; 14 () : 1502339. [epub] 20250120

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39902184

Conserved histone methyltransferases of the DOT1 family are involved in replication regulation, cell cycle progression, stage differentiation, and gene regulation in trypanosomatids. However, the specific functions of these enzymes depend on the host evasion strategies of the parasites. In this study, we investigated the role of DOT1B in Leishmania mexicana, focusing on life cycle progression and infectivity. In contrast to Trypanosoma brucei, in which DOT1B is essential for the differentiation of mammal-infective bloodstream forms to insect procyclic forms, L. mexicana DOT1B (LmxDOT1B) is not critical for the differentiation of promastigotes to amastigotes in vitro. Additionally, there are no significant differences in the ability to infect or differentiate in macrophages or sand fly vectors between the LmxDOT1B-depleted and control strains. These findings highlight the divergence of the function of DOT1B in these related parasites, suggesting genus-specific adaptations in the use of histone modifications for life cycle progression and host adaptation processes.

Zobrazit více v PubMed

Beneke T., Madden R., Makin L., Valli J., Sunter J., Gluenz E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 4, 170095. doi: 10.1098/rsos.170095 PubMed DOI PMC

Burkard G., Fragoso C. M., Roditi I. (2007). Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 153, 220–223. doi: 10.1016/j.molbiopara.2007.02.008 PubMed DOI

Burri M., Schlimme W., Betschart B., Hecker H. (1994). Characterization of the histones of Trypanosoma brucei brucei bloodstream forms. Acta Tropica 58, 291–305. doi: 10.1016/0001-706x(94)90023-x PubMed DOI

de Jesus T. C. L., Nunes V. S., de Lopes M. C., Martil D. E., Iwai L. K., Moretti N. S., et al. . (2016). Chromatin Proteomics Reveals Variable Histone Modifications during the Life Cycle of Trypanosoma cruzi. J. Proteome Res. 15, 2039–2051. doi: 10.1021/acs.jproteome.6b00208 PubMed DOI

Dejung M., Subota I., Bucerius F., Dindar G., Freiwald A., Engstler M., et al. . (2016). Quantitative proteomics uncovers novel factors involved in developmental differentiation of trypanosoma brucei. PloS Pathog. 12, e1005439. doi: 10.1371/journal.ppat.1005439 PubMed DOI PMC

Deshpande A. J., Deshpande A., Sinha A. U., Chen L., Chang J., Cihan A., et al. . (2014). AF10 regulates progressive H3K79 methylation and HOX gene expression in diverse AML subtypes. Cancer Cell 26, 896–908. doi: 10.1016/j.ccell.2014.10.009 PubMed DOI PMC

Dindar G., Anger A. M., Mehlhorn C., Hake S. B., Janzen C. J. (2014). Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes. Nat. Commun. 5, 5313. doi: 10.1038/ncomms6313 PubMed DOI

Farooq Z., Banday S., Pandita T. K., Altaf M. (2016). The many faces of histone H3K79 methylation. Mutat. Rese/Rev Mutat. Res. 768, 46–52. doi: 10.1016/j.mrrev.2016.03.005 PubMed DOI PMC

Feng Q., Wang H., Ng H. H., Erdjument-Bromage H., Tempst P., Struhl K., et al. . (2002). Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr. Biol. 12, 1052–1058. doi: 10.1016/s0960-9822(02)00901-6 PubMed DOI

Feng Y., Yang Y., Ortega M. M., Copeland J. N., Zhang M., Jacob J. B., et al. . (2010). Early mammalian erythropoiesis requires the Dot1L methyltransferase. Blood 116, 4483–4491. doi: 10.1182/blood-2010-03-276501 PubMed DOI PMC

Figueiredo L. M., Janzen C. J., Cross G. A. M. (2008). A histone methyltransferase modulates antigenic variation in african trypanosomes. PloS Biol. 6, e161. doi: 10.1371/journal.pbio.0060161 PubMed DOI PMC

Frederiks F., Tzouros M., Oudgenoeg G., Welsem T., Fornerod M., Krijgsveld J., et al. . (2008). Nonprocessive methylation by Dot1 leads to functional redundancy of histone H3K79 methylation states. Nat. Struct. Mol. Biol. 15, 550–557. doi: 10.1038/nsmb.1432 PubMed DOI

Gassen A., Brechtefeld D., Schandry N., Arteaga-Salas J. M., Israel L., Imhof A., et al. . (2012). DOT1A-dependent H3K76 methylation is required for replication regulation in Trypanosoma brucei. Nucleic Acids Res. 40, 10302–10311. doi: 10.1093/nar/gks801 PubMed DOI PMC

Janzen C. J., Fernandez J. P., Deng H., Diaz R., Hake S. B., Cross G. A. M. (2006. a). Unusual histone modifications in Trypanosoma brucei. FEBS Lett. 580, 2306–2310. doi: 10.1016/j.febslet.2006.03.044 PubMed DOI

Janzen C. J., Hake S. B., Lowell J. E., Cross G. A. M. (2006. b). Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in trypanosoma brucei. Mol. Cell 23, 497–507. doi: 10.1016/j.molcel.2006.06.027 PubMed DOI

Jones B., Su H., Bhat A., Lei H., Bajko J., Hevi S., et al. . (2008). The histone H3K79 methyltransferase dot1L is essential for mammalian development and heterochromatin structure. PloS Genet. 4, e1000190. doi: 10.1371/journal.pgen.1000190 PubMed DOI PMC

Kohl L., Sherwin T., Gull K. (1999). Assembly of the paraflagellar rod and the flagellum attachment zone complex during the trypanosoma brucei cell cycle. J. Eukaryotic Microbiol. 46, 105–109. doi: 10.1111/j.1550-7408.1999.tb04592.x PubMed DOI

Mandava V., Fernandez J. P., Deng H., Janzen C. J., Hake S. B., Cross G. A. M. (2007). Histone modifications in Trypanosoma brucei. Mol. Biochem. Parasitol. 156, 41–50. doi: 10.1016/j.molbiopara.2007.07.005 PubMed DOI PMC

Min J., Feng Q., Li Z., Zhang Y., Xu R.-M. (2003). Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723. doi: 10.1016/s0092-8674(03)00114-4 PubMed DOI

Myskova J., Votypka J., Volf P. (2008). Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol 45, 133–138. doi: 10.1093/jmedent/45.1.133 PubMed DOI

Ng H. H., Feng Q., Wang H., Erdjument-Bromage H., Tempst P., Zhang Y., et al. . (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev. 16, 1518–1527. doi: 10.1101/gad.1001502 PubMed DOI PMC

Nunes V. S., Moretti N. S., da Silva M. S., Elias M. C., Janzen C. J., Schenkman S. (2020). Trimethylation of histone H3K76 by Dot1B enhances cell cycle progression after mitosis in Trypanosoma cruzi. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1867, 118694. doi: 10.1016/j.bbamcr.2020.118694 PubMed DOI

Porto R. M., Amino R., Elias M. C. Q., Faria M., Schenkman S. (2002). Histone H1 is phosphorylated in non-replicating and infective forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 119, 265–271. doi: 10.1016/s0166-6851(01)00430-3 PubMed DOI

Povelones M. L., Gluenz E., Dembek M., Gull K., Rudenko G. (2012). Histone H1 plays a role in heterochromatin formation and VSG expression site silencing in trypanosoma brucei. PloS Pathog. 8, e1003010. doi: 10.1371/journal.ppat.1003010 PubMed DOI PMC

Rout M. P., Field M. C. (2001). Isolation and characterization of subnuclear compartments from trypanosoma brucei IDENTIFICATION OF A MAJOR REPETITIVE NUCLEAR LAMINA COMPONENT*. J. Biol. Chem. 276, 38261–38271. doi: 10.1074/jbc.m104024200 PubMed DOI

Schlimme W., Burri M., Bender K., Betschart B., Hecker H. (1993). Trypanosoma brucei brucei: differences in the nuclear chromatin of bloodstream forms and procyclic culture forms. Parasitology 107, 237–247. doi: 10.1017/s003118200007921x PubMed DOI

Shanower G. A., Muller M., Blanton J. L., Honti V., Gyurkovics H., Schedl P. (2005). Characterization of the grappa gene, the drosophila histone H3 lysine 79 methyltransferase. Genetics 169, 173–184. doi: 10.1534/genetics.104.033191 PubMed DOI PMC

Volf P., Volfova V. (2011). Establishment and maintenance of sand fly colonies. J. Vector Ecol. 36, S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x PubMed DOI

Wheeler R. J., Gluenz E., Gull K. (2011). The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol. Microbiol. 79, 647–662. doi: 10.1111/j.1365-2958.2010.07479.x PubMed DOI PMC

Wood K., Tellier M., Murphy S. (2018). DOT1L and H3K79 methylation in transcription and genomic stability. Biomolecules 8, 11. doi: 10.3390/biom8010011 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...