Can Buckwheat Affect Health and Female Reproductive Functions?

. 2024 Dec 31 ; 73 (6) : 943-950.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39903885

The aim of the present narrative review is to summarise the existing knowledge concerning physiological and reproductive effects of buckwheat, its mechanisms of action on various targets, as well as outlines the direction of the further studies of this functional food plant. Search for literature was performed in agreement with the PRISMA criteria in Cochrane Library, Pubmed, Web of Science, SCOPUS databases between the year 1995 and 2023. Words used to search were buckwheat, review, fertility, ovarian and mechanisms. The current review of the available literature demonstrates the high nutritional value of buckwheat, as well as high contents and number of regulatory molecules in this functional food plant. These molecules can, via multiple signalling pathways, affect a wide spectrum of physiological processes and illnesses, which suggests a therapeutic value of buckwheat substances. Furthermore, recent reports demonstrate ability of buckwheat extract to directly affect basic ovarian cell functions (proliferation, apoptosis, viability, steroidogenesis). On the other hand, understanding the character and applicability of buckwheat influence on female reproductive processes requires further studies. Keywords: Buckwheat, Nutrition, Health, Ovary, Signalling.

Zobrazit více v PubMed

Gimenez-Bastida JA, Zielinski H. Buckwheat as a functional food and its effects on health. J Agric Food Chem. 2015;63(36):7896–7913. doi: 10.1021/acs.jafc.5b02498. PubMed DOI

Jing R, Li H-Q, Hu C-L, Jiang Y-P, Qin L-P, Zheng C-J. Phytochemical and pharmacological profiles of three Fagopyrum buckwheats. Int J Mol Sci. 2016;17(4):589. doi: 10.3390/ijms17040589. PubMed DOI PMC

Kreft M. Buckwheat phenolic metabolites in health and disease. Nutr Res Rev. 2016;29(1):30–39. doi: 10.1017/S0954422415000190. PubMed DOI

Kreft I, Golob A, Vombergar B, Germ M. Tartary buckwheat grain as a source of bioactive compounds in husked groats. Plants. 2023;12(5):1122. doi: 10.3390/plants12051122. PubMed DOI PMC

Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum) Crit Rev Food Sci Nutr. 2023;63(5):657–673. doi: 10.1080/10408398.2021.1952161. PubMed DOI

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1–9. doi: 10.1186/2046-4053-4-1. PubMed DOI PMC

Huda MN, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev MI, Park SU, Zhou M. Treasure from garden: Bioactive compounds of buckwheat. Food Chem. 2021;335:127653. doi: 10.1016/j.foodchem.2020.127653. PubMed DOI PMC

Suzuki T, Noda T, Morishita T, Ishiguro K, Otsuka S, Brunori A. Present status and future perspectives of breeding for buckwheat quality. Breed Sci. 2020;70(1):48–66. doi: 10.1270/jsbbs.19018. PubMed DOI PMC

Rodríguez JP, Rahman H, Thushar S, Singh RK. Healthy and resilient cereals and pseudo-cereals for marginal agriculture: molecular advances for improving nutrient bioavailability. Front Genet. 2020;11:510786. doi: 10.3389/fgene.2020.00049. PubMed DOI PMC

Raguindin PF, Itodo OA, Stoyanov J, Dejanovic GM, Gamba M, Asllanaj E, Minder B, Bussler W, Metzger B, Muka T. A systematic review of phytochemicals in oat and buckwheat. Food Chem. 2021;338:127982. doi: 10.1016/j.foodchem.2020.127982. PubMed DOI

Martínez-Villaluenga C, Peñas E, Hernández-Ledesma B. Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food Chem Toxicol. 2020;137:111178. doi: 10.1016/j.fct.2020.111178. PubMed DOI

Jin H-R, Lee S, Choi S-J. Pharmacokinetics and protective effects of Tartary buckwheat flour extracts against ethanol-induced liver injury in rats. Antioxidants. 2020;9(10):913. doi: 10.3390/antiox9100913. PubMed DOI PMC

Luthar Z, Germ M, Likar M, Golob A, Vogel-Mikuš K, Pongrac P, Kušar A, Pravst I, Kreft I. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects. Plants. 2020;9(12):1638. doi: 10.3390/plants9121638. PubMed DOI PMC

Wronkowska M, Bączek N, Honke J, Topolska J, Wiczkowski W, Zieliński H. Wheat Roll Enhanced by Buckwheat Hull, a New Functional Food: Focus on the Retention of Bioactive Compounds. Molecules. 2023;28(11):4565. doi: 10.3390/molecules28114565. PubMed DOI PMC

Lu C-L, Zheng Q, Shen Q, Song C, Zhang Z-M. Uncovering the relationship and mechanisms of Tartary buckwheat (Fagopyrum tataricum) and Type II diabetes, hypertension, and hyperlipidemia using a network pharmacology approach. PeerJ. 2017;5:e4042. doi: 10.7717/peerj.4042. PubMed DOI PMC

Kawai Y. Understanding metabolic conversions and molecular actions of flavonoids in vivo: toward new strategies for effective utilization of natural polyphenols in human health. J Med Investig. 2018;65(3.4):162–165. doi: 10.2152/jmi.65.162. PubMed DOI

Park G-S, Jeon Y-M, Kim J-H, Park S-K, Lee M-Y. In vitro studies on anti-obesity activity of Korean Memilmuk through AMPK activation. J Environ Biol. 2016;37(1):1. PubMed

Huang Z-R, Chen M, Guo W-L, Li T-T, Liu B, Bai W-D, Ai L-Z, Rao P-F, Ni L, Lv X-C. Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res Int. 2020;136:109511. doi: 10.1016/j.foodres.2020.109511. PubMed DOI

Sofi SA, Ahmed N, Farooq A, Rafiq S, Zargar SM, Kamran F, Dar TA, Mir SA, Dar B, Mousavi Khaneghah A. Nutritional and bioactive characteristics of buckwheat, and its potential for developing gluten-free products: An updated overview. Food Sci Nutr. 2023;11(5):2256–2276. doi: 10.1002/fsn3.3166. PubMed DOI PMC

Peng L, Zhang Q, Zhang Y, Yao Z, Song P, Wei L, Zhao G, Yan Z. Effect of tartary buckwheat, rutin, and quercetin on lipid metabolism in rats during high dietary fat intake. Food Sci Nutr. 2020;8(1):199–213. doi: 10.1002/fsn3.1291. PubMed DOI PMC

Toshio H, Sayaka S, Yukiko Y, Yoshitaka N, Kazuhiro E, Rie T, Emi S, Naoki O, Shinya I, Hiroyuki T. Treatment with buckwheat bran extract prevents the elevation of serum triglyceride levels and fatty liver in KK-Ay mice. J Med Investig. 2014;61(3.4):345–352. doi: 10.2152/jmi.61.345. PubMed DOI

Hong H, Park J, Lumbera WL, Hwang SG. Monascus ruber-fermented buckwheat (Red Yeast Buckwheat) suppresses adipogenesis in 3T3-L1 cells. J Med Food. 2017;20(4):352–359. doi: 10.1089/jmf.2016.3761. PubMed DOI

Lee M-S, Shin Y, Jung S, Kim S-Y, Jo Y-H, Kim C-T, Yun M-K, Lee S-J, Sohn J, Yu H-J. The inhibitory effect of tartary buckwheat extracts on adipogenesis and inflammatory response. Molecules. 2017;22(7):1160. doi: 10.3390/molecules22071160. PubMed DOI PMC

Zhang B, Gao C, Li Y, Wang M. D-chiro-inositol enriched Fagopyrum tataricum (L.) Gaench extract alleviates mitochondrial malfunction and inhibits ER stress/JNK associated inflammation in the endothelium. J Ethnopharmacol. 2018;214:83–89. doi: 10.1016/j.jep.2017.12.002. PubMed DOI

Li F, Ma X, Cui X, Li J, Wang Z. Recombinant buckwheat glutaredoxin intake increases lifespan and stress resistance via hsf-1 upregulation in Caenorhabditis elegans. Exp Gerontol. 2018;104:86–97. doi: 10.1016/j.exger.2018.01.028. PubMed DOI

Bai CZ, Feng ML, Hao XL, Zhao ZJ, Li YY, Wang ZH. Anti-tumoral effects of a trypsin inhibitor derived from buckwheat in vitro and in vivo. Mol Med Report. 2015;12(2):1777–1782. doi: 10.3892/mmr.2015.3649. PubMed DOI PMC

Wang Z, Li S, Ren R, Li J, Cui X. Recombinant buckwheat trypsin inhibitor induces mitophagy by directly targeting mitochondria and causes mitochondrial dysfunction in Hep G2 cells. J Agric Food Chem. 2015;63(35):7795–7804. doi: 10.1021/acs.jafc.5b02644. PubMed DOI

Peng W, Hu C, Shu Z, Han T, Qin L, Zheng C. Antitumor activity of tatariside F isolated from roots of Fagopyrum tataricum (L.) Gaertn against H22 hepatocellular carcinoma via up-regulation of p53. Phytomedicine. 2015;22(7–8):730–736. doi: 10.1016/j.phymed.2015.05.003. PubMed DOI

Guo X, Zhu K, Zhang H, Yao H. Anti-tumor activity of a novel protein obtained from tartary buckwheat. Int J Mol Sci. 2010;11(12):5201–5211. doi: 10.3390/ijms11125201. PubMed DOI PMC

Ren W, Qiao Z, Wang H, Zhu L, Zhang L, Lu Y, Zhang Z, Wang Z. Molecular basis of Fas and cytochrome c pathways of apoptosis induced by tartary buckwheat flavonoid in HL-60 cells. Methods Find Exp Clin Pharmacol. 2003;25(6):431–436. doi: 10.1358/mf.2003.25.6.769647. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alwasel S, Harrath AH. Buckwheat, rooibos, and vitex extracts can mitigate adverse effects of xylene on ovarian cells in vitro. Environ Sci Pollut Res. 2021;28:7431–7439. doi: 10.1007/s11356-020-11082-7. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Harrath AH. Can some food/medicinal plants directly affect porcine ovarian granulosa cells and mitigate the toxic effect of toluene? Reproduction in Domestic Animals. 2023;58(11):1595–1603. doi: 10.1111/rda.14476. PubMed DOI

Sirotkin AV, Macejková M, Tarko A, Fabova Z, Alrezaki A, Alwasel S, Harrath AH. Effects of benzene on gilts ovarian cell functions alone and in combination with buckwheat, rooibos, and vitex. Environ Sci Pollut Res. 2021;28:3434–3444. doi: 10.1007/s11356-020-10739-7. PubMed DOI

Sirotkin AV, Radosová M, Tarko A, Fabova Z, Martín-García I, Alonso F. Abatement of the stimulatory effect of copper nanoparticles supported on titania on ovarian cell functions by some plants and phytochemicals. Nanomaterials. 2020;10(9):1859. doi: 10.3390/nano10091859. PubMed DOI PMC

Sirotkin AV. Regulators of Ovarian Functions. New York: Nova Science Publishers, Inc; 2014.

Li F, Zhang X, Li Y, Lu K, Yin R, Ming J. Phenolics extracted from tartary (Fagopyrum tartaricum L. Gaerth) buckwheat bran exhibit antioxidant activity, and an antiproliferative effect on human breast cancer MDA-MB-231 cells through the p38/MAP kinase pathway. Food Funct. 2017;8(1):177–188. doi: 10.1039/C6FO01230B. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...