• This record comes from PubMed

Rhodoquinone carries electrons in the mammalian electron transport chain

. 2025 Feb 20 ; 188 (4) : 1084-1099.e27. [epub] 20250204

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
F31 CA254162 NCI NIH HHS - United States
R01 AG068670 NIA NIH HHS - United States
R01 DK130852 NIDDK NIH HHS - United States

Links

PubMed 39909039
PubMed Central PMC11845293
DOI 10.1016/j.cell.2024.12.007
PII: S0092-8674(24)01420-X
Knihovny.cz E-resources

Ubiquinone (UQ), the only known electron carrier in the mammalian electron transport chain (ETC), preferentially delivers electrons to the terminal electron acceptor oxygen (O2). In hypoxia, ubiquinol (UQH2) diverts these electrons onto fumarate instead. Here, we identify rhodoquinone (RQ), an electron carrier detected in mitochondria purified from certain mouse and human tissues that preferentially delivers electrons to fumarate through the reversal of succinate dehydrogenase, independent of environmental O2 levels. The RQ/fumarate ETC is strictly present in vivo and is undetectable in cultured mammalian cells. Using genetic and pharmacologic tools that reprogram the ETC from the UQ/O2 to the RQ/fumarate pathway, we establish that these distinct ETCs support unique programs of mitochondrial function and that RQ confers protection upon hypoxia exposure in vitro and in vivo. Thus, in discovering the presence of RQ in mammals, we unveil a tractable therapeutic strategy that exploits flexibility in the ETC to ameliorate hypoxia-related conditions.

Department of Chemistry and Biochemistry Gonzaga University Spokane WA 99258 USA

Department of Systems Biology UMass Chan Medical School Worcester MA 01605 USA

Diabetes Center of Excellence UMass Chan Medical School Worcester MA 01605 USA

Horae Gene Therapy Center UMass Chan Medical School Worcester MA 01605 USA

Horae Gene Therapy Center UMass Chan Medical School Worcester MA 01605 USA; Li Weibo Institute for Rare Disease Research UMass Chan Medical School Worcester MA 01655 USA; Department of Microbiology and Physiological Systems UMass Chan Medical School Worcester MA 01605 USA

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo n 2 166 10 Prague Czech Republic; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Boston Branch 840 Memorial Drive Cambridge MA 02139 USA

Massachusetts Institute of Technology Cambridge MA 02142 USA

Program in Molecular Medicine UMass Chan Medical School Worcester MA 01605 USA

Program in Molecular Medicine UMass Chan Medical School Worcester MA 01605 USA; Diabetes Center of Excellence UMass Chan Medical School Worcester MA 01605 USA

Program in Molecular Medicine UMass Chan Medical School Worcester MA 01605 USA; Division of Cardiovascular Medicine Department of Medicine UMass Chan Medical School Worcester MA 01605 USA

Program in Molecular Medicine UMass Chan Medical School Worcester MA 01605 USA; Morningside Graduate School of Biomedical Sciences UMass Chan Medical School Worcester MA 01605 USA

Program in Molecular Medicine UMass Chan Medical School Worcester MA 01605 USA; Morningside Graduate School of Biomedical Sciences UMass Chan Medical School Worcester MA 01605 USA; Diabetes Center of Excellence UMass Chan Medical School Worcester MA 01605 USA

Small Molecule Screening Center Princeton University Princeton NJ 08544 USA; Department of Chemistry Princeton University Princeton NJ 08544 USA

Whitehead Institute Cambridge MA 02142 USA

See more in PubMed

Spinelli JB, and Haigis MC (2018). The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 20, 745–754. 10.1038/s41556-018-0124-1. PubMed DOI PMC

Martinez-Reyes I, and Chandel NS (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun 11, 102. 10.1038/s41467-019-13668-3. PubMed DOI PMC

Osellame LD, Blacker TS, and Duchen MR (2012). Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26, 711–723. 10.1016/j.beem.2012.05.003. PubMed DOI PMC

Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL, Roessler JM, Cangelosi AL, Henne A, Condon KJ, Zhang T, et al. (2021). Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science 374, 1227–1237. 10.1126/science.abi7495. PubMed DOI PMC

Monzel AS, Enriquez JA, and Picard M (2023). Multifaceted mitochondria: moving mitochondrial science beyond function and dysfunction. Nat Metab 5, 546–562. 10.1038/s42255-023-00783-1. PubMed DOI PMC

Alberts B JA, Lewis J, et al. (2002). Electron-Transport Chains and Their Proton Pumps. Molecular Biology of the Cell. 4th edition.

Alberts B JA, Lewis J, et al. Garland Science; (2002). Electron-Transport Chains and Their Proton Pumps. Molecular Biology of the Cell. 4th edition.

Becucci L, Lottini E, and Guidelli R (2011). Influence of gel-phase microdomains and lipid rafts in lipid monolayers on the electron transfer of a lipophilic redox probe: dioctadecylviologen. Physical Chemistry Chemical Physics 13, 3917–3924. 10.1039/C0CP01928C. PubMed DOI

Becucci L, Scaletti F, and Guidelli R (2011). Gel-phase microdomains and lipid rafts in monolayers affect the redox properties of ubiquinone-10. Biophys J 101, 134–143. 10.1016/j.bpj.2011.05.051. PubMed DOI PMC

Rutter J, Winge DR, and Schiffman JD (2010). Succinate dehydrogenase - Assembly, regulation and role in human disease. Mitochondrion 10, 393–401. 10.1016/j.mito.2010.03.001. PubMed DOI PMC

Kumar R, Landry AP, Guha A, Vitvitsky V, Lee HJ, Seike K, Reddy P, Lyssiotis CA, and Banerjee R (2022). A redox cycle with complex II prioritizes sulfide quinone oxidoreductase-dependent H(2)S oxidation. J Biol Chem 298, 101435. 10.1016/j.jbc.2021.101435. PubMed DOI PMC

Hubbard BT, LaMoia TE,, and Goedeke L, Gaspar RC, Galsgaard KD, Kahn M, Mason GF, Shulman GI (2023). Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metabolism 35, 212–226. PubMed PMC

Chinopoulos C (2019). Succinate in ischemia: Where does it come from? Int J Biochem Cell Biol 115, 105580. 10.1016/j.biocel.2019.105580. PubMed DOI

Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, et al. (2014). Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435. 10.1038/nature13909. PubMed DOI PMC

Bisbach CM, Hass DT, Robbings BM, Rountree AM, Sadilek M, Sweet IR, and Hurley JB (2020). Succinate Can Shuttle Reducing Power from the Hypoxic Retina to the O(2)-Rich Pigment Epithelium. Cell Rep 31, 107606. 10.1016/j.celrep.2020.107606. PubMed DOI PMC

Tielens AGM, Van Hellemond JJ (1998). The electron transport chain in anaerobically functioning eukaryotes. Biochimica et Biophysica Acta 1365, 71–78. PubMed

Pershad Harsh R., H. J, Cochran Bruce, Ackrell Brian A.C.,, and Armstrong FA (1999). Voltammetric studies of bidirectional catalytic electron transport in Escherichia coli succinate dehydrogenase: comparison with the enzyme from beef heart mitochondria. biochemica et biophysica acta 1412, 262–272. PubMed

Keeley TP, and Mann GE (2019). Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 99, 161–234. 10.1152/physrev.00041.2017. PubMed DOI

Krab K, Kempe H, and Wikstrom M (2011). Explaining the enigmatic K(M) for oxygen in cytochrome c oxidase: a kinetic model. Biochim Biophys Acta 1807, 348–358. 10.1016/j.bbabio.2010.12.015. PubMed DOI

Peterson LC, Nicholls P, Degn H (1974). The Effect of Energization on the Apparent Michaelis-Menten Constant for Oxygen in Mitochondrial Respiration. Biochem. J 142, 247–252. PubMed PMC

Bienfait HF, Jacobs JMC, Slater EC (1975). Mitochondrial oxygen affinity as a function of redox and phosphate potenitals. Biochim Biophys Acta 376, 446–457. PubMed

Van Hellemond JJ, Klockiewicz M, Gaasenbeek CP, Roos MH, and Tielens AG (1995). Rhodoquinone and complex II of the electron transport chain in anaerobically functioning eukaryotes. J Biol Chem 270, 31065–31070. 10.1074/jbc.270.52.31065. PubMed DOI

Van Hellemond JJ, Luijten M, Flesch FM, Gaasenbeek CPH, Tielens AGM (1996). Rhodoquinone is synthesized de novo by Fasciola hepatica. Molecular and Biochemical Parasitology 82, 217–226. PubMed

Takamiya S, Matsui T, Taka H, Murayama K, Matsuda M, Aoki T (1999). Free-Living Nematodes Caenorhabditis elegans Possess in Their Mitochondria an Additional Rhodoquinone, an Essential Component of the Eukaryotic Fumarate Reductase System. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 371, 284–289. PubMed

Sato M, Ozawa H (1969). Occurrence of Ubiquinone and Rhodoquinone in Parasitic Nematodes, Metastrongylus elongatus and Ascaris lumbricoides var. suis. The Journal of Biochemistry 65, 861–867. PubMed

Allen PC (1973). Helminths: Comparison of Their Rhodoquinone. Experimental Parasitology 34, 211–219. PubMed

Castro-Guerrero NA, Jasso-Chavez R, and Moreno-Sanchez R (2005). Physiological role of rhodoquinone in Euglena gracilis mitochondria. Biochim Biophys Acta 1710, 113–121. 10.1016/j.bbabio.2005.10.002. PubMed DOI

Lester RL, and Crane FL (1959). The Natural Occurrence of Coenzyme Q and Related Compounds. Journal of Biological Chemistry 234, 2169–2175. 10.1016/s0021-9258(18)69886-2. PubMed DOI

Pennock JF (1967). Occurrence of Vitamins K and Related Quinones Author links open overlay panel. Vitamins and Hormones 24, 307–329. PubMed

RA. M (1971). Ubiquinones, plastoquinones and vitamins K. Biol Rev Camb Philos Soc. 1, 47–98. PubMed

Brajcich BC, Iarocci AL, Johnstone LA, Morgan RK, Lonjers ZT, Hotchko MJ, Muhs JD, Kieffer A, Reynolds BJ, Mandel SM, et al. (2010). Evidence that ubiquinone is a required intermediate for rhodoquinone biosynthesis in Rhodospirillum rubrum. J Bacteriol 192, 436–445. 10.1128/JB.01040-09. PubMed DOI PMC

Campbell ARM, Titus BR, Kuenzi MR, Rodriguez-Perez F, Brunsch ADL, Schroll MM, Owen MC, Cronk JD, Anders KR, and Shepherd JN (2019). Investigation of candidate genes involved in the rhodoquinone biosynthetic pathway in Rhodospirillum rubrum. PLoS One 14, e0217281. 10.1371/journal.pone.0217281. PubMed DOI PMC

Burger N, Logan A, Prime TA, Mottahedin A, Caldwell ST, Krieg T, Hartley RC, James AM, and Murphy MP (2020). A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo. Free Radic Biol Med 147, 37–47. 10.1016/j.freeradbiomed.2019.11.028. PubMed DOI PMC

Guerra RM, and Pagliarini DJ (2023). Coenzyme Q biochemistry and biosynthesis. Trends Biochem Sci 48, 463–476. 10.1016/j.tibs.2022.12.006. PubMed DOI PMC

James AM, Cocheme HM, Murai M, Miyoshi H, and Murphy MP (2010). Complementation of coenzyme Q-deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. FEBS J 277, 2067–2082. 10.1111/j.1742-4658.2010.07622.x. PubMed DOI

Roberts Buceta PM, Romanelli-Cedrez L, Babcock SJ, Xun H, VonPaige ML, Higley TW, Schlatter TD, Davis DC, Drexelius JA, Culver JC, et al. (2019). The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. J Biol Chem 294, 11047–11053. 10.1074/jbc.AC119.009475. PubMed DOI PMC

Stefely JA, and Pagliarini DJ (2017). Biochemistry of Mitochondrial Coenzyme Q Biosynthesis. Trends Biochem Sci 42, 824–843. 10.1016/j.tibs.2017.06.008. PubMed DOI PMC

Kita K, Shinzaburo T, Furushima R, Yu-chang M, Suzuki H, Ozawa T, Oya H (1988). Electron-transfer complexes of Ascaris suum muscle mitochondria. III. Composition and fumarate reductase activity of complex II. Biochim Biophys Acta 935, 130–140. PubMed

Ma YC, Funk M, Dunham WR, and Komuniecki R (1993). Purification and characterization of electron-transfer flavoprotein: rhodoquinone oxidoreductase from anaerobic mitochondria of the adult parasitic nematode, Ascaris suum. Journal of Biological Chemistry 268, 20360–20365. 10.1016/s0021-9258(20)80736-4. PubMed DOI

Del Borrello S, Lautens M, Dolan K, Tan JH, Davie T, Schertzberg MR, Spensley MA, Caudy AA, and Fraser AG (2019). Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway. Elife 8. 10.7554/eLife.48165. PubMed DOI PMC

Salinas G, Langelaan DN, and Shepherd JN (2020). Rhodoquinone in bacteria and animals: Two distinct pathways for biosynthesis of this key electron transporter used in anaerobic bioenergetics. Biochim Biophys Acta Bioenerg 1861, 148278. 10.1016/j.bbabio.2020.148278. PubMed DOI

Tan JH, Lautens M, Romanelli-Cedrez L, Wang J, Schertzberg MR, Reinl SR, Davis RE, Shepherd JN, Fraser AG, and Salinas G (2020). Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. Elife 9. 10.7554/eLife.56376. PubMed DOI PMC

Lonjers ZT, Dickson EL, Chu TP, Kreutz JE, Neacsu FA, Anders KR, and Shepherd JN (2012). Identification of a new gene required for the biosynthesis of rhodoquinone in Rhodospirillum rubrum. J Bacteriol 194, 965–971. 10.1128/JB.06319-11. PubMed DOI PMC

Neupane T, Chambers LR, Godfrey AJ, Monlux MM, Jacobs EJ, Whitworth S, Spawn JE, Clingman SHK, Vergunst KL, Niven FM, et al. (2022). Microbial rhodoquinone biosynthesis proceeds via an atypical RquA-catalyzed amino transfer from S-adenosyl-L-methionine to ubiquinone. Commun Chem 5, 89. 10.1038/s42004-022-00711-6. PubMed DOI PMC

Bernert AC, Jacobs EJ, Reinl SR, Choi CCY, Roberts Buceta PM, Culver JC, Goodspeed CR, Bradley MC, Clarke CF, Basset GJ, and Shepherd JN (2019). Recombinant RquA catalyzes the in vivo conversion of ubiquinone to rhodoquinone in Escherichia coli and Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 1864, 1226–1234. 10.1016/j.bbalip.2019.05.007. PubMed DOI PMC

Parvez S, Long MJC, Poganik JR, and Aye Y (2018). Redox Signaling by Reactive Electrophiles and Oxidants. Chem Rev 118, 8798–8888. 10.1021/acs.chemrev.7b00698. PubMed DOI PMC

Guo R, Zong S, Wu M, Gu J, and Yang M (2017). Architecture of Human Mitochondrial Respiratory Megacomplex I(2)III(2)IV(2). Cell 170, 1247–1257 e1212. 10.1016/j.cell.2017.07.050. PubMed DOI

Du Z, Zhou X, Lai Y, Xu J, Zhang Y, Zhou S, Feng Z, Yu L, Tang Y, Wang W, et al. (2023). Structure of the human respiratory complex II. Proc Natl Acad Sci U S A 120, e2216713120. 10.1073/pnas.2216713120. PubMed DOI PMC

Kim H, Saura P, Poverlein MC, Gamiz-Hernandez AP, and Kaila VRI (2023). Quinone Catalysis Modulates Proton Transfer Reactions in the Membrane Domain of Respiratory Complex I. J Am Chem Soc 145, 17075–17086. 10.1021/jacs.3c03086. PubMed DOI PMC

Caro N AR, Cornejo V, Guevara-Morales JM, Echeverri-Pena OY (2022). Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment. Journal of Inborn Errors of Metabolism & Screening 10. 10.1590/2326-4594-. DOI

Tseyang T, Valeros J, Vo P, and Spinelli JB (2023). Oxygen-Independent Assays to Measure Mitochondrial Function in Mammals. J Vis Exp. 10.3791/65184. PubMed DOI

Warburg O GA, Lorenz S (1967). On growth of cancer cells in media in which glucose is replaced by galactose. Physiol Chem 348, 1686–1687. PubMed

Attardi G, King MP (1989). Human Cells Lacking mtDNA: Repopulation with Exogenous Mitochondria by Complementation. Science 246, 500–503. PubMed

Bodnar AG, Cooper M, Leonard JV, Schapira AH (1995). Respiratory-deficient human fibroblasts exhibiting defective mitochondrial DNA replication. Biochem. J 305, 817–822. PubMed PMC

Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, et al. (2021). Increased demand for NAD(+) relative to ATP drives aerobic glycolysis. Mol Cell 81, 691–707 e696. 10.1016/j.molcel.2020.12.012. PubMed DOI PMC

Boukalova S, Hubackova S, Milosevic M, Ezrova Z, Neuzil J, and Rohlena J (2020). Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim Biophys Acta Mol Basis Dis 1866, 165759. 10.1016/j.bbadis.2020.165759. PubMed DOI

Gregoire M, Morais R, Quilliam MA, and Gravel D (1984). On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. Eur J Biochem 142, 49–55. 10.1111/j.1432-1033.1984.tb08249.x. PubMed DOI

Schieber M, and Chandel NS (2014). ROS function in redox signaling and oxidative stress. Curr Biol 24, R453–462. 10.1016/j.cub.2014.03.034. PubMed DOI PMC

Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, and Schumacker PT (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275, 25130–25138. 10.1074/jbc.M001914200. PubMed DOI

Cadenas E, Boveris A, Ragan CI, Stoppani AOM (1977). Production of Superoxide Radicals and Hydrogen Peroxide by NADHUbiquinone Reductase and Ubiquinol-Cytochrome c Reductase from Beef-Heart Mitochondrial. ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS 180, 248–257. PubMed

Murphy MP (2009). How mitochondria produce reactive oxygen species. Biochem J 417, 1–13. 10.1042/BJ20081386. PubMed DOI PMC

Tirichen H, Yaigoub H, Xu W, Wu C, Li R, and Li Y (2021). Mitochondrial Reactive Oxygen Species and Their Contribution in Chronic Kidney Disease Progression Through Oxidative Stress. Front Physiol 12, 627837. 10.3389/fphys.2021.627837. PubMed DOI PMC

Harris IS, and DeNicola GM (2020). The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol 30, 440–451. 10.1016/j.tcb.2020.03.002. PubMed DOI

Chen G, Kroemer G, and Kepp O (2020). Mitophagy: An Emerging Role in Aging and Age-Associated Diseases. Front Cell Dev Biol 8, 200. 10.3389/fcell.2020.00200. PubMed DOI PMC

DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, et al. (2011). Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109. 10.1038/nature10189. PubMed DOI PMC

Niiyama H, Huang NF, Rollins MD, and Cooke JP (2009). Murine model of hindlimb ischemia. J Vis Exp. 10.3791/1035. PubMed DOI PMC

CHANDEL* NS, M. E, GOLDWASSER‡ E, MATHIEU* CE, SIMON§ MC, AND SCHUMACKER*¶ PT (1998). Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 95, 11715–11720. PubMed PMC

Ramo K, Sugamura K, Craige S, Keaney JF, and Davis RJ (2016). Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. Elife 5. 10.7554/eLife.18414. PubMed DOI PMC

Kant S, Craige SM, Chen K, Reif MM, Learnard H, Kelly M, Caliz AD, Tran KV, Ramo K, Peters OM, et al. (2019). Neural JNK3 regulates blood flow recovery after hindlimb ischemia in mice via an Egr1/Creb1 axis. Nat Commun 10, 4223. 10.1038/s41467-019-11982-4. PubMed DOI PMC

Murphy E, and Steenbergen C (2008). Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88, 581–609. 10.1152/physrev.00024.2007. PubMed DOI PMC

Beinlich FRM, Asiminas A, Untiet V, Bojarowska Z, Pla V, Sigurdsson B, Timmel V, Gehrig L, Graber MH, Hirase H, and Nedergaard M (2024). Oxygen imaging of hypoxic pockets in the mouse cerebral cortex. Science 383, 1471–1478. 10.1126/science.adn1011. PubMed DOI PMC

Cape JL, Strahan JR, Lenaeus MJ, Yuknis BA, Le TT, Shepherd JN, Bowman MK, and Kramer DM (2005). The respiratory substrate rhodoquinol induces Q-cycle bypass reactions in the yeast cytochrome bc(1) complex: mechanistic and physiological implications. J Biol Chem 280, 34654–34660. 10.1074/jbc.M507616200. PubMed DOI

Lin X, Wen X, Wei Z, Guo K, Shi F, Huang T, Wang W, and Zheng J (2021). Vitamin K2 protects against Abeta42-induced neurotoxicity by activating autophagy and improving mitochondrial function in Drosophila. Neuroreport 32, 431–437. 10.1097/WNR.0000000000001599. PubMed DOI PMC

Vos Melissa, 2 Esposito Giovanni, 1,2 Edirisinghe Janaka N., 3 Vilain Sven, 1,2Haddad Dominik M., 1,2 Slabbaert Jan R., 1,2 Van Meensel Stefanie, 1,2 Schaap Onno, 1,2De Strooper Bart, 1,2 Meganathan R, 3 Morais Vanessa A., 1,2 Verstreken Patrik 1,2* (2012). Vitamin K 2 Is a MitochondrialElectron Carrier That RescuesPink1 Deficiency. Science 336, 1306–1310. 10.5061/dryad.d54cc. PubMed DOI

Pryde KR, and Hirst J (2011). Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J Biol Chem 286, 18056–18065. 10.1074/jbc.M110.186841. PubMed DOI PMC

Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, James AM, and Murphy MP (2018). Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem 293, 9869–9879. 10.1074/jbc.RA118.003647. PubMed DOI PMC

Arnold PK, Jackson BT, Paras KI, Brunner JS, Hart ML, Newsom OJ, Alibeckoff SP, Endress J, Drill E, Sullivan LB, and Finley LWS (2022). A non-canonical tricarboxylic acid cycle underlies cellular identity. Nature 603, 477–481. 10.1038/s41586-022-04475-w. PubMed DOI PMC

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, et al. (2017). Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118. 10.1038/nature24057. PubMed DOI PMC

Kim J, and DeBerardinis RJ (2019). Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab 30, 434–446. 10.1016/j.cmet.2019.08.013. PubMed DOI PMC

Jang C, Hui S, Zeng X, Cowan AJ, Wang L, Chen L, Morscher RJ, Reyes J, Frezza C, Hwang HY, et al. (2019). Metabolite Exchange between Mammalian Organs Quantified in Pigs. Cell Metab 30, 594–606 e593. 10.1016/j.cmet.2019.06.002. PubMed DOI PMC

Arnold PK, and Finley LWS (2023). Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299, 102838. 10.1016/j.jbc.2022.102838. PubMed DOI PMC

Ryu KW, Fung TS, Baker DC, Saoi M, Park J, Febres-Aldana CA, Aly RG, Cui R, Sharma A, Fu Y, et al. (2024). Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 635, 746–754. 10.1038/s41586-024-08146-w. PubMed DOI PMC

Lautens MJ, Tan JH, Serrat X, Del Borrello S, Schertzberg MR, and Fraser AG (2021). Identification of enzymes that have helminth-specific active sites and are required for Rhodoquinone-dependent metabolism as targets for new anthelmintics. PLoS Negl Trop Dis 15, e0009991. 10.1371/journal.pntd.0009991. PubMed DOI PMC

Alves TC, Pongratz RL, Zhao X, Yarborough O, Sereda S, Shirihai O, Cline GW, Mason G, and Kibbey RG (2015). Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. Cell Metab 22, 936–947. 10.1016/j.cmet.2015.08.021. PubMed DOI PMC

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, and Olson AJ (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 11, 905–919. 10.1038/nprot.2016.051. PubMed DOI PMC

Hanwell Marcus D1, Curtis Donald E3, Lonie David C4, Vandermeersch Tim5,, and Hutchison1 E.Z.a.G.R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics. PubMed PMC

Dallakyan S, and Olson AJ (2015). Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology: Methods and Protocols, Hempel JE, Williams CH, and Hong CC, eds. (Springer; New York: ), pp. 243–250. 10.1007/978-1-4939-2269-7_19. PubMed DOI

Galemou Yoga E, Schiller J, and Zickermann V (2021). Ubiquinone Binding and Reduction by Complex I-Open Questions and Mechanistic Implications. Front Chem 9, 672851. 10.3389/fchem.2021.672851. PubMed DOI PMC

Trott O, and Olson AJ (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31, 455–461. 10.1002/jcc.21334. PubMed DOI PMC

Li H, and Durbin R (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. 10.1093/bioinformatics/btp324. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Liao Y, Smyth GK, and Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 10.1093/bioinformatics/btt656. PubMed DOI

Robinson MD, McCarthy DJ, and Smyth GK (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. 10.1093/bioinformatics/btp616. PubMed DOI PMC

Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, and Sergushichev A (2021). 10.1101/060012. DOI

Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, and Tamayo P (2015). The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 1, 417–425. 10.1016/j.cels.2015.12.004. PubMed DOI PMC

Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, Shibata R, Sato K, Walsh K, and Keaney JF Jr. (2011). NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation 124, 731–740. 10.1161/CIRCULATIONAHA.111.030775. PubMed DOI PMC

Sena-Esteves M, and Gao G (2020). Introducing Genes into Mammalian Cells: Viral Vectors. Cold Spring Harb Protoc 2020, 095513. 10.1101/pdb.top095513. PubMed DOI

Brenner S (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94. PubMed PMC

Xiao Y, and Meierhofer D (2019). Are Hydroethidine-Based Probes Reliable for Reactive Oxygen Species Detection? Antioxid Redox Signal 31, 359–367. 10.1089/ars.2018.7535. PubMed DOI PMC

Heinrich P, Kohler C, Ellmann L, Kuerner P, Spang R, Oefner PJ, and Dettmer K (2018). Correcting for natural isotope abundance and tracer impurity in MS-, MS/MS- and high-resolution-multiple-tracer-data from stable isotope labeling experiments with IsoCorrectoR. Sci Rep 8, 17910. 10.1038/s41598-018-36293-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...